-
Notifications
You must be signed in to change notification settings - Fork 333
/
Copy pathmetrics.py
115 lines (106 loc) · 5.18 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#! usr/bin/env python3
# -*- coding:utf-8 -*-
"""
# Copyright 2016 Google
# Copyright 2019 The BioNLP-HZAU Kaiyin Zhou
# Time:2019/04/08
"""
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import confusion_matrix
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variable_scope
import numpy as np
def metric_variable(shape, dtype, validate_shape=True, name=None):
"""Create variable in `GraphKeys.(LOCAL|METRIC_VARIABLES)` collections.
If running in a `DistributionStrategy` context, the variable will be
"tower local". This means:
* The returned object will be a container with separate variables
per replica/tower of the model.
* When writing to the variable, e.g. using `assign_add` in a metric
update, the update will be applied to the variable local to the
replica/tower.
* To get a metric's result value, we need to sum the variable values
across the replicas/towers before computing the final answer.
Furthermore, the final answer should be computed once instead of
in every replica/tower. Both of these are accomplished by
running the computation of the final result value inside
`tf.contrib.distribution_strategy_context.get_tower_context(
).merge_call(fn)`.
Inside the `merge_call()`, ops are only added to the graph once
and access to a tower-local variable in a computation returns
the sum across all replicas/towers.
Args:
shape: Shape of the created variable.
dtype: Type of the created variable.
validate_shape: (Optional) Whether shape validation is enabled for
the created variable.
name: (Optional) String name of the created variable.
Returns:
A (non-trainable) variable initialized to zero, or if inside a
`DistributionStrategy` scope a tower-local variable container.
"""
# Note that synchronization "ON_READ" implies trainable=False.
return variable_scope.variable(
lambda: array_ops.zeros(shape, dtype),
collections=[
ops.GraphKeys.LOCAL_VARIABLES, ops.GraphKeys.METRIC_VARIABLES
],
validate_shape=validate_shape,
synchronization=variable_scope.VariableSynchronization.ON_READ,
aggregation=variable_scope.VariableAggregation.SUM,
name=name)
def streaming_confusion_matrix(labels, predictions, num_classes, weights=None):
"""Calculate a streaming confusion matrix.
Calculates a confusion matrix. For estimation over a stream of data,
the function creates an `update_op` operation.
Args:
labels: A `Tensor` of ground truth labels with shape [batch size] and of
type `int32` or `int64`. The tensor will be flattened if its rank > 1.
predictions: A `Tensor` of prediction results for semantic labels, whose
shape is [batch size] and type `int32` or `int64`. The tensor will be
flattened if its rank > 1.
num_classes: The possible number of labels the prediction task can
have. This value must be provided, since a confusion matrix of
dimension = [num_classes, num_classes] will be allocated.
weights: Optional `Tensor` whose rank is either 0, or the same rank as
`labels`, and must be broadcastable to `labels` (i.e., all dimensions must
be either `1`, or the same as the corresponding `labels` dimension).
Returns:
total_cm: A `Tensor` representing the confusion matrix.
update_op: An operation that increments the confusion matrix.
"""
# Local variable to accumulate the predictions in the confusion matrix.
total_cm = metric_variable(
[num_classes, num_classes], dtypes.float64, name='total_confusion_matrix')
# Cast the type to int64 required by confusion_matrix_ops.
predictions = math_ops.to_int64(predictions)
labels = math_ops.to_int64(labels)
num_classes = math_ops.to_int64(num_classes)
# Flatten the input if its rank > 1.
if predictions.get_shape().ndims > 1:
predictions = array_ops.reshape(predictions, [-1])
if labels.get_shape().ndims > 1:
labels = array_ops.reshape(labels, [-1])
if (weights is not None) and (weights.get_shape().ndims > 1):
weights = array_ops.reshape(weights, [-1])
# Accumulate the prediction to current confusion matrix.
current_cm = confusion_matrix.confusion_matrix(
labels, predictions, num_classes, weights=weights, dtype=dtypes.float64)
update_op = state_ops.assign_add(total_cm, current_cm)
return (total_cm, update_op)
def calculate(total_cm, num_class):
precisions = []
recalls = []
fs = []
for i in range(num_class):
rowsum, colsum = np.sum(total_cm[i]), np.sum(total_cm[r][i] for r in range(num_class))
precision = total_cm[i][i] / float(colsum+1e-12)
recall = total_cm[i][i] / float(rowsum+1e-12)
f = 2 * precision * recall / (precision + recall+1e-12)
precisions.append(precision)
recalls.append(recall)
fs.append(f)
return np.mean(precisions), np.mean(recalls), np.mean(fs)