-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
39 lines (24 loc) · 850 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(x):
return x * (1 - x)
training_inputs = np.array([[0,0,1],
[1,1,1],
[1,0,1],
[0,1,1]])
training_outputs = np.array([[0,1,1,0]]).T
np.random.seed(1)
synaptic_weights = 2 * np.random.random((3, 1)) - 1
print('Random starting synaptic weights: ')
print(synaptic_weights)
for iteration in range(20000):
input_layer = training_inputs
outputs = sigmoid(np.dot(input_layer, synaptic_weights))
error = training_outputs - outputs
adjustments = error * sigmoid_derivative(outputs)
synaptic_weights += np.dot(input_layer.T, adjustments)
print('Synaptic weights after training')
print(synaptic_weights)
print('Outputs after training: ')
print(outputs)