forked from AtlasAnalyticsLab/Vim4Path
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpatch_heatmaps.py
152 lines (122 loc) · 5.47 KB
/
patch_heatmaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from glob import glob
import os
from natsort import os_sorted
from dino.vision_transformer import DINOHead, VisionTransformer
from dino.vim.models_mamba import VisionMamba
from dino.config import configurations
from dino.main import get_args_parser
from functools import partial
from dino.utils import load_pretrained_weights
from torchvision import transforms
from torch import nn
import torch
from PIL import Image
import torchvision
import matplotlib.pyplot as plt
import numpy as np
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from tqdm import tqdm
import random
import matplotlib.gridspec as gridspec
import cv2
def get_model(args):
config = configurations[args.arch]
config['img_size'] = args.image_size
config['patch_size'] = args.patch_size
config['num_classes'] = args.num_classes
if args.arch in configurations:
config = configurations[args.arch]
config['img_size'] = args.image_size
config['patch_size'] = args.patch_size
config['num_classes'] = args.num_classes
if 'norm_layer' in config and config['norm_layer'] == "nn.LayerNorm":
config['norm_layer'] = partial(nn.LayerNorm, eps=config['eps'])
config['drop_path_rate'] = 0
if args.arch.startswith('vim'):
model = VisionMamba(return_features=True, **config)
embed_dim = model.embed_dim
elif args.arch.startswith('vit'):
model = VisionTransformer(**config)
embed_dim = model.embed_dim * (args.n_last_blocks + int(args.avgpool_patchtokens))
print('EMBEDDED DIM:', embed_dim)
else:
print(f"Unknown architecture: {args.arch}")
return model
dataset_dir = 'path_to_test_candidate_images'
parser = get_args_parser()
args = parser.parse_known_args()[0]
val_transform = transforms.Compose([
transforms.Resize(args.image_size, interpolation=3),
transforms.CenterCrop(args.image_size),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
def reshape_transform_vit(tensor, height=14, width=14):
result = tensor[:, 1 : , :].reshape(tensor.size(0),
height, width, tensor.size(2))
result = result.transpose(2, 3).transpose(1, 2)
return result
def reshape_transform_vim(tensor, height=14, width=14, token_position=98):
hidden_state = tensor
hidden_state = torch.cat((hidden_state[:, 1:token_position, :], hidden_state[:, token_position+1:, :]), dim=1)
result = hidden_state.reshape(hidden_state.size(0), height, width, hidden_state.size(2))
result = result.transpose(2, 3).transpose(1, 2)
return result
args.image_size = 224
args.patch_size = 16
args.num_classes = 2
args.n_last_blocks = 4
args.avgpool_patchtokens = False
args.checkpoint_key = 'teacher'
args.arch = 'vim-s'
args.pretrained_weights = '/home/ubuntu/checkpoints/camelyon16_224_10x/vim-s_224-96/checkpoint.pth'
model_vim_s = get_model(args)
model_vim_s.cuda()
model_vim_s.eval()
load_pretrained_weights(model_vim_s, args.pretrained_weights,
args.checkpoint_key, args.arch, args.patch_size)
args.arch = 'vit-s'
args.pretrained_weights = '/home/ubuntu/checkpoints/camelyon16_224_10x/vit-s_224-96/checkpoint.pth'
model_vit_s = get_model(args)
model_vit_s.cuda()
model_vit_s.eval()
load_pretrained_weights(model_vit_s, args.pretrained_weights, args.checkpoint_key, args.arch, args.patch_size)
models = {
'Vim-s':(model_vim_s, model_vim_s.layers[-1].drop_path),
'ViT-s':(model_vit_s, model_vit_s.blocks[-1].norm1)
}
for class_name in ['tumor', 'normal']:
img_paths = glob(os.path.join(dataset_dir, class_name, "*jpg"))
img_paths = os_sorted(img_paths)
target_image_idx = list(np.random.randint(0, len(img_paths), 60))
os.makedirs(f'heatmaps/heatmaps_diverse/{class_name}', exist_ok=True)
os.makedirs(f'heatmaps/heatmaps_diverse/{class_name}/raw', exist_ok=True)
for i in tqdm(target_image_idx):
img = Image.open(img_paths[i])
img_transformed = val_transform(img).unsqueeze(0)
img_show = img_transformed.cpu().squeeze().permute(1, 2, 0).numpy()
img_show = (img_show - img_show.min()) / (img_show.max() - img_show.min()) # Normalize to [0,1]
plt.figure(figsize=(50, 23))
gs = gridspec.GridSpec(2, 5)
# Original image
final_img = np.array(img)/255
ax0 = plt.subplot(gs[0:2, 0:2])
ax0.imshow(final_img)
ax0.set_title('Original Image', fontsize=40)
ax0.axis('off')
cams = []
for idx, (model_name, (model, target_layer)) in enumerate(models.items()):
cam = GradCAM(model=model, target_layers=[target_layer],
reshape_transform=reshape_transform_vim if 'mamba' in model.__class__.__name__.lower() else reshape_transform_vit)
grayscale_cam = cam(input_tensor=img_transformed)[0, :]
grayscale_cam = cv2.resize(grayscale_cam, (final_img.shape[:2]))
cam_image = show_cam_on_image(final_img, grayscale_cam, use_rgb=True)
ax = plt.subplot(gs[idx // 3, idx % 3 + 2])
ax.imshow(cam_image)
Image.fromarray(cam_image).save(f'heatmaps/heatmaps_diverse/{class_name}/raw/{img_name}_{model_name}.png')
ax.set_title(f'{model_name} Heatmap', fontsize=40)
ax.axis('off')
plt.tight_layout()
plt.savefig(f'heatmaps/heatmaps_diverse/{class_name}/{img_name}.jpg', bbox_inches='tight', dpi=200)
plt.close()