forked from open-mmlab/mmtracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbytetrack_yolox_x_crowdhuman_mot17-private-half.py
164 lines (154 loc) · 4.79 KB
/
bytetrack_yolox_x_crowdhuman_mot17-private-half.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
_base_ = [
'../../_base_/models/yolox_x_8x8.py',
'../../_base_/datasets/mot_challenge.py', '../../_base_/default_runtime.py'
]
img_scale = (800, 1440)
samples_per_gpu = 4
model = dict(
type='ByteTrack',
detector=dict(
input_size=img_scale,
random_size_range=(18, 32),
bbox_head=dict(num_classes=1),
test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.7)),
init_cfg=dict(
type='Pretrained',
checkpoint= # noqa: E251
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth' # noqa: E501
)),
motion=dict(type='KalmanFilter'),
tracker=dict(
type='ByteTracker',
obj_score_thrs=dict(high=0.6, low=0.1),
init_track_thr=0.7,
weight_iou_with_det_scores=True,
match_iou_thrs=dict(high=0.1, low=0.5, tentative=0.3),
num_frames_retain=30))
train_pipeline = [
dict(
type='Mosaic',
img_scale=img_scale,
pad_val=114.0,
bbox_clip_border=False),
dict(
type='RandomAffine',
scaling_ratio_range=(0.1, 2),
border=(-img_scale[0] // 2, -img_scale[1] // 2),
bbox_clip_border=False),
dict(
type='MixUp',
img_scale=img_scale,
ratio_range=(0.8, 1.6),
pad_val=114.0,
bbox_clip_border=False),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Resize',
img_scale=img_scale,
keep_ratio=True,
bbox_clip_border=False),
dict(type='Pad', size_divisor=32, pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=img_scale,
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[0.0, 0.0, 0.0],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(
type='Pad',
size_divisor=32,
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='ImageToTensor', keys=['img']),
dict(type='VideoCollect', keys=['img'])
])
]
data = dict(
samples_per_gpu=samples_per_gpu,
workers_per_gpu=4,
persistent_workers=True,
train=dict(
_delete_=True,
type='MultiImageMixDataset',
dataset=dict(
type='CocoDataset',
ann_file=[
'data/MOT17/annotations/half-train_cocoformat.json',
'data/crowdhuman/annotations/crowdhuman_train.json',
'data/crowdhuman/annotations/crowdhuman_val.json'
],
img_prefix=[
'data/MOT17/train', 'data/crowdhuman/train',
'data/crowdhuman/val'
],
classes=('pedestrian', ),
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True)
],
filter_empty_gt=False),
pipeline=train_pipeline),
val=dict(
pipeline=test_pipeline,
interpolate_tracks_cfg=dict(min_num_frames=5, max_num_frames=20)),
test=dict(
pipeline=test_pipeline,
interpolate_tracks_cfg=dict(min_num_frames=5, max_num_frames=20)))
# optimizer
# default 8 gpu
optimizer = dict(
type='SGD',
lr=0.001 / 8 * samples_per_gpu,
momentum=0.9,
weight_decay=5e-4,
nesterov=True,
paramwise_cfg=dict(norm_decay_mult=0.0, bias_decay_mult=0.0))
optimizer_config = dict(grad_clip=None)
# some hyper parameters
total_epochs = 80
num_last_epochs = 10
resume_from = None
interval = 5
# learning policy
lr_config = dict(
policy='YOLOX',
warmup='exp',
by_epoch=False,
warmup_by_epoch=True,
warmup_ratio=1,
warmup_iters=1,
num_last_epochs=num_last_epochs,
min_lr_ratio=0.05)
custom_hooks = [
dict(
type='YOLOXModeSwitchHook',
num_last_epochs=num_last_epochs,
priority=48),
dict(
type='SyncNormHook',
num_last_epochs=num_last_epochs,
interval=interval,
priority=48),
dict(
type='ExpMomentumEMAHook',
resume_from=resume_from,
momentum=0.0001,
priority=49)
]
checkpoint_config = dict(interval=1)
evaluation = dict(metric=['bbox', 'track'], interval=1)
search_metrics = ['MOTA', 'IDF1', 'FN', 'FP', 'IDs', 'MT', 'ML']
# you need to set mode='dynamic' if you are using pytorch<=1.5.0
fp16 = dict(loss_scale=dict(init_scale=512.))