forked from open-mmlab/mmtracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbytetrack_yolox_x_crowdhuman_mot20-private.py
76 lines (72 loc) · 2.49 KB
/
bytetrack_yolox_x_crowdhuman_mot20-private.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
_base_ = ['./bytetrack_yolox_x_crowdhuman_mot17-private-half.py']
img_scale = (896, 1600)
model = dict(
detector=dict(input_size=img_scale, random_size_range=(20, 36)),
tracker=dict(
weight_iou_with_det_scores=False,
match_iou_thrs=dict(high=0.3),
))
train_pipeline = [
dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
dict(
type='RandomAffine',
scaling_ratio_range=(0.1, 2),
border=(-img_scale[0] // 2, -img_scale[1] // 2)),
dict(
type='MixUp',
img_scale=img_scale,
ratio_range=(0.8, 1.6),
pad_val=114.0),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Resize', img_scale=img_scale, keep_ratio=True),
dict(type='Pad', size_divisor=32, pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=img_scale,
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[0.0, 0.0, 0.0],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(
type='Pad',
size_divisor=32,
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='ImageToTensor', keys=['img']),
dict(type='VideoCollect', keys=['img'])
])
]
data = dict(
train=dict(
dataset=dict(
ann_file=[
'data/MOT20/annotations/train_cocoformat.json',
'data/crowdhuman/annotations/crowdhuman_train.json',
'data/crowdhuman/annotations/crowdhuman_val.json'
],
img_prefix=[
'data/MOT20/train', 'data/crowdhuman/train',
'data/crowdhuman/val'
]),
pipeline=train_pipeline),
val=dict(
ann_file='data/MOT17/annotations/train_cocoformat.json',
img_prefix='data/MOT17/train',
pipeline=test_pipeline),
test=dict(
ann_file='data/MOT20/annotations/test_cocoformat.json',
img_prefix='data/MOT20/test',
pipeline=test_pipeline))
checkpoint_config = dict(interval=1)
evaluation = dict(metric=['bbox', 'track'], interval=1)