forked from open-mmlab/mmtracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstark_st2_r50_50e_got10k.py
85 lines (81 loc) · 2.46 KB
/
stark_st2_r50_50e_got10k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
_base_ = ['./stark_st1_r50_500e_got10k.py']
# model setting
model = dict(
type='Stark',
head=dict(
type='StarkHead',
cls_head=dict(
type='ScoreHead',
input_dim=256,
hidden_dim=256,
output_dim=1,
num_layers=3,
use_bn=False),
frozen_modules=['transformer', 'bbox_head', 'query_embedding'],
loss_cls=dict(type='CrossEntropyLoss', use_sigmoid=True)),
frozen_modules=['backbone', 'neck'])
data_root = 'data/'
train_pipeline = [
dict(
type='TridentSampling',
num_search_frames=1,
num_template_frames=2,
max_frame_range=[200],
cls_pos_prob=0.5,
train_cls_head=True),
dict(type='LoadMultiImagesFromFile', to_float32=True),
dict(type='SeqLoadAnnotations', with_bbox=True, with_label=True),
dict(type='SeqGrayAug', prob=0.05),
dict(
type='SeqRandomFlip',
share_params=True,
flip_ratio=0.5,
direction='horizontal'),
dict(
type='SeqBboxJitter',
center_jitter_factor=[0, 0, 4.5],
scale_jitter_factor=[0, 0, 0.5],
crop_size_factor=[2, 2, 5]),
dict(
type='SeqCropLikeStark',
crop_size_factor=[2, 2, 5],
output_size=[128, 128, 320]),
dict(type='SeqBrightnessAug', jitter_range=0.2),
dict(
type='SeqRandomFlip',
share_params=False,
flip_ratio=0.5,
direction='horizontal'),
dict(
type='SeqNormalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='CheckPadMaskValidity', stride=16),
dict(
type='VideoCollect',
keys=['img', 'gt_bboxes', 'gt_labels', 'padding_mask'],
meta_keys=('valid')),
dict(type='ConcatSameTypeFrames', num_key_frames=2),
dict(type='SeqDefaultFormatBundle', ref_prefix='search')
]
# dataset settings
data = dict(
train=dict(dataset_cfgs=[
dict(
type='GOT10kDataset',
ann_file=data_root + 'got10k/annotations/got10k_train_infos.txt',
img_prefix=data_root + 'got10k',
pipeline=train_pipeline,
split='train',
test_mode=False)
]))
# learning policy
lr_config = dict(policy='step', step=[40])
# checkpoint saving
checkpoint_config = dict(interval=10)
evaluation = dict(interval=100, start=51)
# yapf:enable
# runtime settings
total_epochs = 50
load_from = 'logs/stark_st1_got10k_online/epoch_500.pth'