forked from LIVIAETS/boundary-loss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
434 lines (341 loc) · 19.4 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
#!/usr/env/bin python3.9
import io
import re
import pickle
import random
from pathlib import Path
from itertools import repeat
from operator import itemgetter, mul
from functools import partial, reduce
from multiprocessing import cpu_count
from typing import Callable, BinaryIO, Match, Pattern, Tuple, Union, Optional
import torch
import numpy as np
from PIL import Image, ImageOps
from torch import Tensor
from torchvision import transforms
from skimage.transform import resize
from torch._six import container_abcs
from torch.utils.data import Dataset, DataLoader, Sampler
from utils import map_, class2one_hot, one_hot2dist, id_
from utils import one_hot, depth
F = Union[Path, BinaryIO]
D = Union[Image.Image, np.ndarray, Tensor]
resizing_fn = partial(resize, mode="constant", preserve_range=True, anti_aliasing=False)
def png_transform(resolution: Tuple[float, ...], K: int) -> Callable[[D], Tensor]:
return transforms.Compose([
lambda img: img.convert('L'),
lambda img: np.array(img)[np.newaxis, ...],
lambda nd: nd / 255, # max <= 1
lambda nd: torch.tensor(nd, dtype=torch.float32)
])
def equalized_png(resolution: Tuple[float, ...], K: int) -> Callable[[D], Tensor]:
return transforms.Compose([
lambda img: img.convert('L'),
lambda img: ImageOps.equalize(img),
lambda img: np.array(img)[np.newaxis, ...],
lambda nd: nd / 255, # max <= 1
lambda nd: torch.tensor(nd, dtype=torch.float32)
])
def png_transform_npy(resolution: Tuple[float, ...], K: int) -> Callable[[D], Tensor]:
return transforms.Compose([
lambda img: img.convert('L'),
lambda img: np.array(img)[np.newaxis, ...],
lambda nd: nd / 255, # max <= 1
])
def npy_transform(resolution: Tuple[float, ...], K: int) -> Callable[[D], Tensor]:
return transforms.Compose([
lambda npy: np.array(npy)[np.newaxis, ...],
lambda nd: torch.tensor(nd, dtype=torch.float32)
])
def raw_npy_transform(resolution: Tuple[float, ...], K: int) -> Callable[[D], Tensor]:
return transforms.Compose([
lambda npy: np.array(npy),
lambda nd: torch.tensor(nd, dtype=torch.float32)
])
def from_numpy_transform(resolution: Tuple[float, ...], K: int) -> Callable[[D], Tensor]:
return transforms.Compose([
lambda nd: torch.tensor(nd)
])
def tensor_transform(resolution: Tuple[float, ...], K: int) -> Callable[[D], Tensor]:
return transforms.Compose([
lambda nd: torch.tensor(nd, dtype=torch.float32)
])
def gt_transform(resolution: Tuple[float, ...], K: int) -> Callable[[D], Tensor]:
return transforms.Compose([
lambda img: np.array(img)[...],
lambda nd: torch.tensor(nd, dtype=torch.int64)[None, ...], # Add one dimension to simulate batch
partial(class2one_hot, K=K),
itemgetter(0) # Then pop the element to go back to img shape
])
def dummy_gt_transform(resolution: Tuple[float, ...], K: int) -> Callable[[D], Tensor]:
return transforms.Compose([
lambda img: np.array(img)[...],
lambda nd: torch.tensor(nd, dtype=torch.int64)[None, ...], # Add one dimension to simulate batch
lambda t: torch.zeros_like(t),
partial(class2one_hot, K=K),
itemgetter(0) # Then pop the element to go back to img shape
])
def dist_map_transform(resolution: Tuple[float, ...], K: int) -> Callable[[D], Tensor]:
return transforms.Compose([
gt_transform(resolution, K),
lambda t: t.cpu().numpy(),
partial(one_hot2dist, resolution=resolution),
lambda nd: torch.tensor(nd, dtype=torch.float32)
])
def unet_loss_weights_transform(resolution: Tuple[float, ...], K: int) -> Callable[[D], Tensor]:
w_0: float = 10
sigma: float = 5
def closure(in_: D) -> Tensor:
gt: Tensor = gt_transform(resolution, K)(in_)
signed_dist_map: Tensor = dist_map_transform(resolution, K)(in_)
dist_map: Tensor = torch.abs(signed_dist_map).type(torch.float32)
w_c: Tensor = torch.einsum("k...->k", gt) / reduce(mul, gt.shape[1:])
filled_w_c: Tensor = torch.einsum("k,k...->k...", w_c.type(torch.float32), torch.ones_like(dist_map))
w: Tensor = filled_w_c + w_0 * torch.exp(- dist_map**2 / (2 * sigma**2))
assert (K, *in_.shape) == w.shape == gt.shape, (in_.shape, w.shape, gt.shape)
final: Tensor = torch.einsum("k...,k...->k...", gt.type(torch.float32), w)
return final
return closure
def get_loaders(args, data_folder: str,
batch_size: int, n_class: int,
debug: bool, in_memory: bool,
dimensions: int,
use_spacing: bool = False) -> Tuple[list[DataLoader], list[DataLoader]]:
losses_list = eval(args.losses)
if depth(losses_list) == 1:
losses_list = [losses_list]
list_folders_list = eval(args.folders)
# For compatibility reasons, avoid changing all the previous configuration files
if depth(list_folders_list) == 1:
list_folders_list = [list_folders_list]
# print(folders_list)
# Prepare the datasets and dataloaders
print()
train_loaders = []
for i, (train_topfolder, folders_list) in \
enumerate(zip(args.training_folders, list_folders_list)):
folders, trans, are_hots = zip(*folders_list)
print(f">> {i}th training loader: {train_topfolder} with {folders}")
# Create partial functions: Easier for readability later (see the difference between train and validation)
gen_dataset = partial(SliceDataset,
transforms=trans,
are_hots=are_hots,
debug=debug,
K=n_class,
in_memory=in_memory,
dimensions=dimensions,
no_assert=args.no_assert_dataloader,
ignore_norm=args.ignore_norm_dataloader)
data_loader = partial(DataLoader,
num_workers=min(cpu_count(), batch_size + 5),
pin_memory=True,
collate_fn=custom_collate)
train_folders: list[Path] = [Path(data_folder, train_topfolder, f) for f in folders]
# I assume all files have the same name inside their folder: makes things much easier
train_names: list[str] = map_(lambda p: str(p.name), train_folders[0].glob("*"))
t_spacing_p: Path = Path(data_folder, train_topfolder, "spacing.pkl")
train_spacing_dict: dict[str, Tuple[float, ...]] = pickle.load(open(t_spacing_p, 'rb')) if use_spacing else None
train_set = gen_dataset(train_names,
train_folders,
spacing_dict=train_spacing_dict)
if args.group_train:
train_sampler = PatientSampler(train_set, args.grp_regex, shuffle=True)
train_loader = data_loader(train_set,
batch_sampler=train_sampler)
else:
train_loader = data_loader(train_set,
batch_size=batch_size,
shuffle=True,
drop_last=False)
train_loaders.append(train_loader)
if i == args.val_loader_id or (args.val_loader_id == -1 and (i + 1) == len(args.training_folders)):
print(f">> Validation dataloader (id {args.val_loader_id}), {train_topfolder} {folders}")
val_folders: list[Path] = [Path(data_folder, args.validation_folder, f) for f in folders]
val_names: list[str] = map_(lambda p: str(p.name), val_folders[0].glob("*"))
v_spacing_p: Path = Path(data_folder, args.validation_folder, "spacing.pkl")
val_spacing_dict: dict[str, Tuple[float, ...]]
val_spacing_dict = pickle.load(open(v_spacing_p, 'rb')) if use_spacing else None
val_set = gen_dataset(val_names,
val_folders,
spacing_dict=val_spacing_dict)
val_sampler = PatientSampler(val_set, args.grp_regex, shuffle=False) if args.group else None
val_batch_size = 1 if val_sampler else batch_size
val_loader = data_loader(val_set,
batch_sampler=val_sampler,
batch_size=val_batch_size)
return train_loaders, [val_loader]
class SliceDataset(Dataset):
def __init__(self, filenames: list[str], folders: list[Path], are_hots: list[bool],
transforms: list[Callable], debug=False, quiet=False,
K=4, in_memory: bool = False, spacing_dict: dict[str, Tuple[float, ...]] = None,
augment: Optional[Callable] = None, ignore_norm: bool = False,
dimensions: int = 2, debug_size: int = 10, no_assert: bool = False) -> None:
self.folders: list[Path] = folders
self.transforms: list[Callable[[Tuple, int], Callable[[D], Tensor]]] = transforms
assert len(self.transforms) == len(self.folders)
self.are_hots: list[bool] = are_hots
self.filenames: list[str] = filenames
self.debug = debug
self.K: int = K # Number of classes
self.in_memory: bool = in_memory
self.quiet: bool = quiet
self.spacing_dict: Optional[dict[str, Tuple[float, ...]]] = spacing_dict
if self.spacing_dict:
assert len(self.spacing_dict) == len(self.filenames)
print("> Spacing dictionnary loaded correctly")
self.augment: Optional[Callable] = augment
self.ignore_norm: bool = ignore_norm
self.dimensions: int = dimensions
self.no_assert: bool = no_assert
if self.debug:
self.filenames = self.filenames[:debug_size]
assert self.check_files() # Make sure all file exists
if not self.quiet:
print(f">> Initializing {self.__class__.__name__} with {len(self.filenames)} images")
print(f"> {self.dimensions=}")
if self.augment:
print("> Will augment data online")
# Load things in memory if needed
self.files: list[list[F]] = SliceDataset.load_images(self.folders, self.filenames, self.in_memory)
assert len(self.files) == len(self.folders)
for files in self.files:
assert len(files) == len(self.filenames)
def check_files(self) -> bool:
for folder in self.folders:
if not Path(folder).exists():
return False
for f_n in self.filenames:
if not Path(folder, f_n).exists():
return False
return True
@staticmethod
def load_images(folders: list[Path], filenames: list[str], in_memory: bool, quiet=False) -> list[list[F]]:
def load(folder: Path, filename: str) -> F:
p: Path = Path(folder, filename)
if in_memory:
with open(p, 'rb') as data:
res = io.BytesIO(data.read())
return res
return p
if in_memory and not quiet:
print("> Loading the data in memory...")
files: list[list[F]] = [[load(f, im) for im in filenames] for f in folders]
return files
def __len__(self):
return len(self.filenames)
def __getitem__(self, index: int) -> dict[str, Union[str,
int,
Tensor,
list[Tensor],
list[Tuple[slice, ...]],
list[Tuple[Tensor, Tensor]]]]:
filename: str = self.filenames[index]
path_name: Path = Path(filename)
images: list[D]
if path_name.suffix == ".png":
images = [Image.open(files[index]) for files in self.files]
elif path_name.suffix == ".npy":
images = [np.load(files[index]) for files in self.files]
else:
raise ValueError(filename)
resolution: Tuple[float, ...]
if self.spacing_dict:
resolution = self.spacing_dict[path_name.stem]
else:
resolution = tuple([1] * self.dimensions)
# Final transforms and assertions
assert len(images) == len(self.folders) == len(self.transforms)
t_tensors: list[Tensor] = [tr(resolution, self.K)(e) for (tr, e) in zip(self.transforms, images)]
_, *img_shape = t_tensors[0].shape
final_tensors: list[Tensor]
if self.augment:
final_tensors = self.augment(*t_tensors)
else:
final_tensors = t_tensors
del t_tensors
if not self.no_assert:
# main image is between 0 and 1
if not self.ignore_norm:
assert 0 <= final_tensors[0].min() and final_tensors[0].max() <= 1, \
(final_tensors[0].min(), final_tensors[0].max())
for ttensor in final_tensors[1:]: # Things should be one-hot or at least have the shape
assert ttensor.shape == (self.K, *img_shape), (ttensor.shape, self.K, *img_shape)
for ttensor, is_hot in zip(final_tensors, self.are_hots): # All masks (ground truths) are class encoded
if is_hot:
assert one_hot(ttensor, axis=0), torch.einsum("k...->...", ttensor)
img, gt = final_tensors[:2]
return {'filenames': filename,
'images': final_tensors[0],
'gt': final_tensors[1],
'labels': final_tensors[2:],
'spacings': torch.tensor(resolution),
'index': index}
_use_shared_memory = True
def custom_collate(batch):
"""Collate function to handle dict from dataset dict[str, Union[str, Tensor, list[Tensor], list[slice]]]"""
elem = batch[0]
elem_type = type(elem)
if isinstance(elem, torch.sparse.FloatTensor):
return batch
elif isinstance(elem, torch.Tensor):
out = None
# if torch.utils.data.get_worker_info() is not None:
if _use_shared_memory:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = elem.storage()._new_shared(numel)
out = elem.new(storage)
return torch.stack(batch, 0, out=out)
elif isinstance(elem, np.ndarray):
return np.stack(batch)
elif isinstance(elem, str) or isinstance(elem, slice) or isinstance(elem, int):
return batch
elif isinstance(elem, container_abcs.Mapping):
return {key: custom_collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, list):
if len(elem) == 0:
return batch
if isinstance(elem[0], tuple): # Handling for spacings
return batch
transposed = zip(*batch)
return [custom_collate(samples) for samples in transposed]
raise TypeError(elem_type)
class PatientSampler(Sampler):
def __init__(self, dataset: SliceDataset, grp_regex, shuffle=False, quiet=False) -> None:
filenames: list[str] = dataset.filenames
# Might be needed in case of escape sequence fuckups
# self.grp_regex = bytes(grp_regex, "utf-8").decode('unicode_escape')
assert grp_regex is not None
self.grp_regex = grp_regex
# Configure the shuffling function
self.shuffle: bool = shuffle
self.shuffle_fn: Callable = (lambda x: random.sample(x, len(x))) if self.shuffle else id_
# print(f"Grouping using {self.grp_regex} regex")
# assert grp_regex == "(patient\d+_\d+)_\d+"
# grouping_regex: Pattern = re.compile("grp_regex")
grouping_regex: Pattern = re.compile(self.grp_regex)
stems: list[str] = [Path(filename).stem for filename in filenames] # avoid matching the extension
matches: list[Match] = map_(grouping_regex.match, stems)
patients: list[str] = [match.group(1) for match in matches]
unique_patients: list[str] = list(set(patients))
assert len(unique_patients) < len(filenames)
if not quiet:
print(f"Found {len(unique_patients)} unique patients out of {len(filenames)} images ; regex: {self.grp_regex}")
self.idx_map: dict[str, list[int]] = dict(zip(unique_patients, repeat(None)))
for i, patient in enumerate(patients):
if not self.idx_map[patient]:
self.idx_map[patient] = []
self.idx_map[patient] += [i]
# print(self.idx_map)
assert sum(len(self.idx_map[k]) for k in unique_patients) == len(filenames)
for pid in self.idx_map.keys():
self.idx_map[pid] = sorted(self.idx_map[pid], key=lambda i: filenames[i])
# print("Patient to slices mapping done")
def __len__(self):
return len(self.idx_map.keys())
def __iter__(self):
values = list(self.idx_map.values())
shuffled = self.shuffle_fn(values)
return iter(shuffled)