forked from LIVIAETS/boundary-loss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeras_loss.py
64 lines (46 loc) · 1.87 KB
/
keras_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# # Simple script which includes functions for calculating surface loss in keras
# ## See the related discussion: https://github.com/LIVIAETS/boundary-loss/issues/14
from keras import backend as K
import numpy as np
import tensorflow as tf
from scipy.ndimage import distance_transform_edt as distance
def calc_dist_map(seg):
res = np.zeros_like(seg)
posmask = seg.astype(np.bool)
if posmask.any():
negmask = ~posmask
res = distance(negmask) * negmask - (distance(posmask) - 1) * posmask
return res
def calc_dist_map_batch(y_true):
y_true_numpy = y_true.numpy()
return np.array([calc_dist_map(y)
for y in y_true_numpy]).astype(np.float32)
def surface_loss_keras(y_true, y_pred):
y_true_dist_map = tf.py_function(func=calc_dist_map_batch,
inp=[y_true],
Tout=tf.float32)
multipled = y_pred * y_true_dist_map
return K.mean(multipled)
# # Scheduler
# ### The following scheduler was proposed by @marcinkaczor
# ### https://github.com/LIVIAETS/boundary-loss/issues/14#issuecomment-547048076
# class AlphaScheduler(Callback):
# def __init__(self, alpha, update_fn):
# self.alpha = alpha
# self.update_fn = update_fn
# def on_epoch_end(self, epoch, logs=None):
# updated_alpha = self.update_fn(K.get_value(self.alpha))
# K.set_value(self.alpha, updated_alpha)
# alpha = K.variable(1, dtype='float32')
# def gl_sl_wrapper(alpha):
# def gl_sl(y_true, y_pred):
# return alpha * generalized_dice_loss(
# y_true, y_pred) + (1 - alpha) * surface_loss_keras(y_true, y_pred)
# return gl_sl
# model.compile(loss=gl_sl_wrapper(alpha))
# def update_alpha(value):
# return np.clip(value - 0.01, 0.01, 1)
# history = model.fit_generator(
# ...,
# callbacks=AlphaScheduler(alpha, update_alpha)
# )