forked from LIVIAETS/boundary-loss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
158 lines (108 loc) · 4.68 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#!/usr/bin/env python3
import unittest
import torch
import numpy as np
import utils
class TestDice(unittest.TestCase):
def test_equal(self):
t = torch.zeros((1, 100, 100), dtype=torch.int64)
t[0, 40:60, 40:60] = 1
c = utils.class2one_hot(t, K=2)
self.assertEqual(utils.dice_coef(c, c)[0, 0], 1)
def test_empty(self):
t = torch.zeros((1, 100, 100), dtype=torch.int64)
t[0, 40:60, 40:60] = 1
c = utils.class2one_hot(t, K=2)
self.assertEqual(utils.dice_coef(c, c)[0, 0], 1)
def test_caca(self):
t = torch.zeros((1, 100, 100), dtype=torch.int64)
t[0, 40:60, 40:60] = 1
c = utils.class2one_hot(t, K=2)
z = torch.zeros_like(c)
z[0, 1, ...] = 1
self.assertEqual(utils.dice_coef(c, z, smooth=0)[0, 0], 0) # Annoying to deal with the almost equal thing
class TestHausdorff(unittest.TestCase):
def test_closure(self):
t = torch.zeros((1, 256, 256), dtype=torch.int64)
t[0, 50:60, :] = 1
t2 = utils.class2one_hot(t, K=2)
self.assertEqual(tuple(t2.shape), (1, 2, 256, 256))
self.assertTrue(torch.equal(utils.hausdorff(t2, t2), torch.zeros((1, 2))))
def test_empty(self):
t = torch.zeros((1, 256, 256), dtype=torch.int64)
t2 = utils.class2one_hot(t, K=2)
self.assertEqual(tuple(t2.shape), (1, 2, 256, 256))
self.assertTrue(torch.equal(utils.hausdorff(t2, t2), torch.zeros((1, 2))))
def test_caca(self):
t = torch.zeros((1, 256, 256), dtype=torch.int64)
t[0, 50:60, :] = 1
t2 = utils.class2one_hot(t, K=2)
self.assertEqual(tuple(t2.shape), (1, 2, 256, 256))
z = torch.zeros_like(t)
z2 = utils.class2one_hot(z, K=2)
diag = (256**2 + 256**2) ** 0.5
# print(f"{diag=}")
# print(f"{utils.hausdorff(z2, t2)=}")
self.assertTrue(torch.equal(utils.hausdorff(z2, t2),
torch.tensor([[60, diag]], dtype=torch.float32)))
def test_proper(self):
t = torch.zeros((1, 256, 256), dtype=torch.int64)
t[0, 50:60, :] = 1
t2 = utils.class2one_hot(t, K=2)
self.assertEqual(tuple(t2.shape), (1, 2, 256, 256))
z = torch.zeros_like(t)
z[0, 80:90, :] = 1
z2 = utils.class2one_hot(z, K=2)
self.assertTrue(torch.equal(utils.hausdorff(z2, t2),
torch.tensor([[30, 30]], dtype=torch.float32)))
class TestDistMap(unittest.TestCase):
def test_closure(self):
a = np.zeros((1, 256, 256))
a[:, 50:60, :] = 1
o = utils.class2one_hot(torch.Tensor(a).type(torch.int64), K=2).numpy()
res = utils.one_hot2dist(o[0])
self.assertEqual(res.shape, (2, 256, 256))
neg = (res <= 0) * res
self.assertEqual(neg.sum(), (o * res).sum())
def test_full_coverage(self):
a = np.zeros((1, 256, 256))
a[:, 50:60, :] = 1
o = utils.class2one_hot(torch.Tensor(a).type(torch.int64), K=2).numpy()
res = utils.one_hot2dist(o[0])
self.assertEqual(res.shape, (2, 256, 256))
self.assertEqual((res[1] <= 0).sum(), a.sum())
self.assertEqual((res[1] > 0).sum(), (1 - a).sum())
def test_empty(self):
a = np.zeros((1, 256, 256))
o = utils.class2one_hot(torch.Tensor(a).type(torch.int64), K=2).numpy()
res = utils.one_hot2dist(o[0])
self.assertEqual(res.shape, (2, 256, 256))
self.assertEqual(res[1].sum(), 0)
self.assertEqual((res[0] <= 0).sum(), a.size)
def test_max_dist(self):
"""
The max dist for a box should be at the midle of the object, +-1
"""
a = np.zeros((1, 256, 256))
a[:, 1:254, 1:254] = 1
o = utils.class2one_hot(torch.Tensor(a).type(torch.int64), K=2).numpy()
res = utils.one_hot2dist(o[0])
self.assertEqual(res.shape, (2, 256, 256))
self.assertEqual(res[0].max(), 127)
self.assertEqual(np.unravel_index(res[0].argmax(), (256, 256)), (127, 127))
self.assertEqual(res[1].min(), -126)
self.assertEqual(np.unravel_index(res[1].argmin(), (256, 256)), (127, 127))
def test_border(self):
"""
Make sure the border inside the object is 0 in the distance map
"""
for l in range(3, 5):
a = np.zeros((1, 25, 25))
a[:, 3:3 + l, 3:3 + l] = 1
o = utils.class2one_hot(torch.Tensor(a).type(torch.int64), K=2).numpy()
res = utils.one_hot2dist(o[0])
self.assertEqual(res.shape, (2, 25, 25))
border = (res[1] == 0)
self.assertEqual(border.sum(), 4 * (l - 1))
if __name__ == "__main__":
unittest.main()