forked from LIVIAETS/boundary-loss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
396 lines (269 loc) · 11.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
#!/usr/bin/env python3.9
import argparse
from pathlib import Path
from operator import add
from multiprocessing.pool import Pool
from random import random, uniform, randint
from functools import partial
from typing import Any, Callable, Iterable, List, Set, Tuple, TypeVar, Union, cast
import torch
import numpy as np
import torch.sparse
from tqdm import tqdm
from torch import einsum
from torch import Tensor
from skimage.io import imsave
from PIL import Image, ImageOps
from medpy.metric.binary import hd
from scipy.ndimage import distance_transform_edt as eucl_distance
colors = ["c", "r", "g", "b", "m", 'y', 'k', 'chartreuse', 'coral', 'gold', 'lavender',
'silver', 'tan', 'teal', 'wheat', 'orchid', 'orange', 'tomato']
# functions redefinitions
tqdm_ = partial(tqdm, dynamic_ncols=True,
leave=False,
bar_format='{l_bar}{bar}| {n_fmt}/{total_fmt} [' '{rate_fmt}{postfix}]')
A = TypeVar("A")
B = TypeVar("B")
T = TypeVar("T", Tensor, np.ndarray)
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def map_(fn: Callable[[A], B], iter: Iterable[A]) -> List[B]:
return list(map(fn, iter))
def mmap_(fn: Callable[[A], B], iter: Iterable[A]) -> List[B]:
return Pool().map(fn, iter)
def starmmap_(fn: Callable[[Tuple[A]], B], iter: Iterable[Tuple[A]]) -> List[B]:
return Pool().starmap(fn, iter)
def uc_(fn: Callable) -> Callable:
return partial(uncurry, fn)
def uncurry(fn: Callable, args: List[Any]) -> Any:
return fn(*args)
def id_(x):
return x
def flatten_(to_flat: Iterable[Iterable[A]]) -> List[A]:
return [e for l in to_flat for e in l]
def flatten__(to_flat):
if type(to_flat) != list:
return [to_flat]
return [e for l in to_flat for e in flatten__(l)]
def depth(e: List) -> int:
"""
Compute the depth of nested lists
"""
if type(e) == list and e:
return 1 + depth(e[0])
return 0
# fns
def soft_size(a: Tensor) -> Tensor:
return torch.einsum("bk...->bk", a)[..., None]
def batch_soft_size(a: Tensor) -> Tensor:
return torch.einsum("bk...->k", a)[..., None]
# Assert utils
def uniq(a: Tensor) -> Set:
return set(torch.unique(a.cpu()).numpy())
def sset(a: Tensor, sub: Iterable) -> bool:
return uniq(a).issubset(sub)
def eq(a: Tensor, b) -> bool:
return torch.eq(a, b).all()
def simplex(t: Tensor, axis=1) -> bool:
_sum = cast(Tensor, t.sum(axis).type(torch.float32))
_ones = torch.ones_like(_sum, dtype=torch.float32)
return torch.allclose(_sum, _ones)
def one_hot(t: Tensor, axis=1) -> bool:
return simplex(t, axis) and sset(t, [0, 1])
# # Metrics and shitz
def meta_dice(sum_str: str, label: Tensor, pred: Tensor, smooth: float = 1e-8) -> Tensor:
assert label.shape == pred.shape
assert one_hot(label)
assert one_hot(pred)
inter_size: Tensor = einsum(sum_str, [intersection(label, pred)]).type(torch.float32)
sum_sizes: Tensor = (einsum(sum_str, [label]) + einsum(sum_str, [pred])).type(torch.float32)
dices: Tensor = (2 * inter_size + smooth) / (sum_sizes + smooth)
return dices
dice_coef = partial(meta_dice, "bk...->bk")
dice_batch = partial(meta_dice, "bk...->k") # used for 3d dice
def intersection(a: Tensor, b: Tensor) -> Tensor:
assert a.shape == b.shape
assert sset(a, [0, 1])
assert sset(b, [0, 1])
res = a & b
assert sset(res, [0, 1])
return res
def union(a: Tensor, b: Tensor) -> Tensor:
assert a.shape == b.shape
assert sset(a, [0, 1])
assert sset(b, [0, 1])
res = a | b
assert sset(res, [0, 1])
return res
def inter_sum(a: Tensor, b: Tensor) -> Tensor:
return einsum("bk...->bk", intersection(a, b).type(torch.float32))
def union_sum(a: Tensor, b: Tensor) -> Tensor:
return einsum("bk...->bk", union(a, b).type(torch.float32))
def hausdorff(preds: Tensor, target: Tensor, spacing: Tensor = None) -> Tensor:
assert preds.shape == target.shape
assert one_hot(preds)
assert one_hot(target)
B, K, *img_shape = preds.shape
if spacing is None:
D: int = len(img_shape)
spacing = torch.ones((B, D), dtype=torch.float32)
assert spacing.shape == (B, len(img_shape))
res = torch.zeros((B, K), dtype=torch.float32, device=preds.device)
n_pred = preds.cpu().numpy()
n_target = target.cpu().numpy()
n_spacing = spacing.cpu().numpy()
for b in range(B):
# print(spacing[b])
# if K == 2:
# res[b, :] = hd(n_pred[b, 1], n_target[b, 1], voxelspacing=n_spacing[b])
# continue
for k in range(K):
if not n_target[b, k].any(): # No object to predict
if n_pred[b, k].any(): # Predicted something nonetheless
res[b, k] = sum((dd * d)**2 for (dd, d) in zip(n_spacing[b], img_shape)) ** 0.5
continue
else:
res[b, k] = 0
continue
if not n_pred[b, k].any():
if n_target[b, k].any():
res[b, k] = sum((dd * d)**2 for (dd, d) in zip(n_spacing[b], img_shape)) ** 0.5
continue
else:
res[b, k] = 0
continue
res[b, k] = hd(n_pred[b, k], n_target[b, k], voxelspacing=n_spacing[b])
return res
# switch between representations
def probs2class(probs: Tensor) -> Tensor:
b, _, *img_shape = probs.shape
assert simplex(probs)
res = probs.argmax(dim=1)
assert res.shape == (b, *img_shape)
return res
def class2one_hot(seg: Tensor, K: int) -> Tensor:
# Breaking change but otherwise can't deal with both 2d and 3d
# if len(seg.shape) == 3: # Only w, h, d, used by the dataloader
# return class2one_hot(seg.unsqueeze(dim=0), K)[0]
assert sset(seg, list(range(K))), (uniq(seg), K)
b, *img_shape = seg.shape # type: Tuple[int, ...]
device = seg.device
res = torch.zeros((b, K, *img_shape), dtype=torch.int32, device=device).scatter_(1, seg[:, None, ...], 1)
assert res.shape == (b, K, *img_shape)
assert one_hot(res)
return res
def np_class2one_hot(seg: np.ndarray, K: int) -> np.ndarray:
return class2one_hot(torch.from_numpy(seg.copy()).type(torch.int64), K).numpy()
def probs2one_hot(probs: Tensor) -> Tensor:
_, K, *_ = probs.shape
assert simplex(probs)
res = class2one_hot(probs2class(probs), K)
assert res.shape == probs.shape
assert one_hot(res)
return res
def one_hot2dist(seg: np.ndarray, resolution: Tuple[float, float, float] = None,
dtype=None) -> np.ndarray:
assert one_hot(torch.tensor(seg), axis=0)
K: int = len(seg)
res = np.zeros_like(seg, dtype=dtype)
for k in range(K):
posmask = seg[k].astype(np.bool)
if posmask.any():
negmask = ~posmask
res[k] = eucl_distance(negmask, sampling=resolution) * negmask \
- (eucl_distance(posmask, sampling=resolution) - 1) * posmask
# The idea is to leave blank the negative classes
# since this is one-hot encoded, another class will supervise that pixel
return res
def one_hot2hd_dist(seg: np.ndarray, resolution: Tuple[float, float, float] = None,
dtype=None) -> np.ndarray:
"""
Used for https://arxiv.org/pdf/1904.10030.pdf,
implementation from https://github.com/JunMa11/SegWithDistMap
"""
# Relasx the assertion to allow computation live on only a
# subset of the classes
# assert one_hot(torch.tensor(seg), axis=0)
K: int = len(seg)
res = np.zeros_like(seg, dtype=dtype)
for k in range(K):
posmask = seg[k].astype(np.bool)
if posmask.any():
res[k] = eucl_distance(posmask, sampling=resolution)
return res
# Misc utils
def save_images(segs: Tensor, names: Iterable[str], root: str, mode: str, iter: int) -> None:
for seg, name in zip(segs, names):
save_path = Path(root, f"iter{iter:03d}", mode, name).with_suffix(".png")
save_path.parent.mkdir(parents=True, exist_ok=True)
if len(seg.shape) == 2:
imsave(str(save_path), seg.detach().cpu().numpy().astype(np.uint8))
elif len(seg.shape) == 3:
np.save(str(save_path), seg.detach().cpu().numpy())
else:
raise ValueError("How did you get here")
def augment(*arrs: Union[np.ndarray, Image.Image], rotate_angle: float = 45,
flip: bool = True, mirror: bool = True,
rotate: bool = True, scale: bool = False) -> List[Image.Image]:
imgs: List[Image.Image] = map_(Image.fromarray, arrs) if isinstance(arrs[0], np.ndarray) else list(arrs)
if flip and random() > 0.5:
imgs = map_(ImageOps.flip, imgs)
if mirror and random() > 0.5:
imgs = map_(ImageOps.mirror, imgs)
if rotate and random() > 0.5:
angle: float = uniform(-rotate_angle, rotate_angle)
imgs = map_(lambda e: e.rotate(angle), imgs)
if scale and random() > 0.5:
scale_factor: float = uniform(1, 1.2)
w, h = imgs[0].size # Tuple[int, int]
nw, nh = int(w * scale_factor), int(h * scale_factor) # Tuple[int, int]
# Resize
imgs = map_(lambda i: i.resize((nw, nh)), imgs)
# Now need to crop to original size
bw, bh = randint(0, nw - w), randint(0, nh - h) # Tuple[int, int]
imgs = map_(lambda i: i.crop((bw, bh, bw + w, bh + h)), imgs)
assert all(i.size == (w, h) for i in imgs)
return imgs
def augment_arr(*arrs_a: np.ndarray, rotate_angle: float = 45,
flip: bool = True, mirror: bool = True,
rotate: bool = True, scale: bool = False,
noise: bool = False, noise_loc: float = 0.5, noise_lambda: float = 0.1) -> List[np.ndarray]:
arrs = list(arrs_a) # manoucherie type check
if flip and random() > 0.5:
arrs = map_(np.flip, arrs)
if mirror and random() > 0.5:
arrs = map_(np.fliplr, arrs)
if noise and random() > 0.5:
mask: np.ndarray = np.random.laplace(noise_loc, noise_lambda, arrs[0].shape)
arrs = map_(partial(add, mask), arrs)
arrs = map_(lambda e: (e - e.min()) / (e.max() - e.min()), arrs)
# if random() > 0.5:
# orig_shape = arrs[0].shape
# angle = random() * 90 - 45
# arrs = map_(lambda e: sp.ndimage.rotate(e, angle, order=1), arrs)
# arrs = get_center(orig_shape, *arrs)
return arrs
def get_center(shape: Tuple, *arrs: np.ndarray) -> List[np.ndarray]:
""" center cropping """
def g_center(arr):
if arr.shape == shape:
return arr
offsets: List[int] = [(arrs - s) // 2 for (arrs, s) in zip(arr.shape, shape)]
if 0 in offsets:
return arr[[slice(0, s) for s in shape]]
res = arr[[slice(d, -d) for d in offsets]][[slice(0, s) for s in shape]] # Deal with off-by-one errors
assert res.shape == shape, (res.shape, shape, offsets)
return res
return [g_center(arr) for arr in arrs]
def center_pad(arr: np.ndarray, target_shape: Tuple[int, ...]) -> np.ndarray:
assert len(arr.shape) == len(target_shape)
diff: List[int] = [(nx - x) for (x, nx) in zip(arr.shape, target_shape)]
pad_width: List[Tuple[int, int]] = [(w // 2, w - (w // 2)) for w in diff]
res = np.pad(arr, pad_width)
assert res.shape == target_shape, (res.shape, target_shape)
return res