forked from LIVIAETS/boundary-loss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwmh.make
217 lines (170 loc) · 7.93 KB
/
wmh.make
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
CC = python3
SHELL = /usr/bin/zsh
PP = PYTHONPATH="$(PYTHONPATH):."
# RD stands for Result DIR -- useful way to report from extracted archive
RD = results/wmh
.PHONY = all boundary plot train metrics hausdorff pack
red:=$(shell tput bold ; tput setaf 1)
green:=$(shell tput bold ; tput setaf 2)
yellow:=$(shell tput bold ; tput setaf 3)
blue:=$(shell tput bold ; tput setaf 4)
reset:=$(shell tput sgr0)
# CFLAGS = -O
# DEBUG = --debug
EPC = 100
# EPC = 5
K = 2
BS = 8
G_RGX = (\d+_\d+)_\d+
P_RGX = (\d+)_\d+_\d+
NET = UNet
B_DATA = [('in_npy', tensor_transform, False), ('gt_npy', gt_transform, True)]
TRN = $(RD)/gdl $(RD)/gdl_surface_steal $(RD)/gdl_3d_surface_steal $(RD)/gdl_hausdorff_w
GRAPH = $(RD)/tra_loss.png $(RD)/val_loss.png \
$(RD)/val_dice.png $(RD)/tra_dice.png \
$(RD)/val_3d_hausdorff.png \
$(RD)/val_3d_hd95.png
BOXPLOT = $(RD)/val_dice_boxplot.png
PLT = $(GRAPH) $(BOXPLOT)
REPO = $(shell basename `git rev-parse --show-toplevel`)
DATE = $(shell date +"%y%m%d")
HASH = $(shell git rev-parse --short HEAD)
HOSTNAME = $(shell hostname)
PBASE = archives
PACK = $(PBASE)/$(REPO)-$(DATE)-$(HASH)-$(HOSTNAME)-wmh.tar.gz
all: $(PACK)
plot: $(PLT)
train: $(TRN)
pack: report $(PACK)
$(PACK): $(PLT) $(TRN)
$(info $(red)tar cf $@$(reset))
mkdir -p $(@D)
# tar -zc -f $@ $^ # Use if pigz is not available
tar cf - $^ | pigz > $@
chmod -w $@
# Extraction and slicing
data/WMH/train/in_npy data/WMH/val/in_npy: data/WMH
data/WMH: data/wmh
$(info $(yellow)$(CC) $(CFLAGS) preprocess/slice_wmh.py$(reset))
rm -rf $@_tmp
$(PP) $(CC) $(CFLAGS) preprocess/slice_wmh.py --source_dir $< --dest_dir $@_tmp --n_augment=0 --retain=10
mv $@_tmp $@
data/wmh: data/wmh.lineage data/Amsterdam_GE3T.zip data/Singapore.zip data/Utrecht.zip
$(info $(yellow)unzip data/Amsterdam_GE3T.zip data/Singapore.zip data/Utrecht.zip$(reset))
md5sum -c $<
rm -rf $@_tmp $@
unzip -q $(word 2, $^) -d $@_tmp
unzip -q $(word 3, $^) -d $@_tmp
unzip -q $(word 4, $^) -d $@_tmp
mv $@_tmp/*/* $@_tmp && rmdir $@_tmp/GE3T $@_tmp/Singapore $@_tmp/Utrecht
rm -r $@_tmp/*/orig # Do not care about that part
rm -r $@_tmp/*/pre/3DT1.nii.gz # Cannot align to the rest
mv $@_tmp $@
# Training
$(RD)/gdl: OPT = --losses="[('GeneralizedDice', {'idc': [0, 1]}, 1)]"
$(RD)/gdl: data/WMH/train/in_npy data/WMH/val/in_npy
$(RD)/gdl: DATA = --folders="$(B_DATA)+[('gt_npy', gt_transform, True)]"
$(RD)/gdl_surface_w: OPT = --losses="[('GeneralizedDice', {'idc': [0, 1]}, 1), \
('SurfaceLoss', {'idc': [1]}, 0.1)]"
$(RD)/gdl_surface_w: data/WMH/train/in_npy data/WMH/val/in_npy
$(RD)/gdl_surface_w: DATA = --folders="$(B_DATA)+[('gt_npy', gt_transform, True), \
('gt_npy', dist_map_transform, False)]"
$(RD)/gdl_hausdorff_w: OPT = --losses="[('GeneralizedDice', {'idc': [0, 1]}, 1), \
('HausdorffLoss', {'idc': [1]}, 0.1)]"
$(RD)/gdl_hausdorff_w: data/WMH/train/in_npy data/WMH/val/in_npy
$(RD)/gdl_hausdorff_w: DATA = --folders="$(B_DATA)+[('gt_npy', gt_transform, True), \
('gt_npy', gt_transform, True)]"
$(RD)/hausdorff: OPT = --losses="[('HausdorffLoss', {'idc': [1]}, 0.1)]"
$(RD)/hausdorff: data/WMH/train/in_npy data/WMH/val/in_npy
$(RD)/hausdorff: DATA = --folders="$(B_DATA)+[('gt_npy', gt_transform, True)]"
$(RD)/gdl_surface_add: OPT = --losses="[('GeneralizedDice', {'idc': [0, 1]}, 1), \
('SurfaceLoss', {'idc': [1]}, 0.01)]"
$(RD)/gdl_surface_add: data/WMH/train/in_npy data/WMH/val/in_npy
$(RD)/gdl_surface_add: DATA = --folders="$(B_DATA)+[('gt_npy', gt_transform, True), \
('gt_npy', dist_map_transform, False)]" \
--scheduler=StealWeight --scheduler_params="{'to_steal': 0.01}"
$(RD)/gdl_surface_steal: OPT = --losses="[('GeneralizedDice', {'idc': [0, 1]}, 1), \
('SurfaceLoss', {'idc': [1]}, 0.01)]"
$(RD)/gdl_surface_steal: data/WMH/train/in_npy data/WMH/val/in_npy
$(RD)/gdl_surface_steal: DATA = --folders="$(B_DATA)+[('gt_npy', gt_transform, True), \
('gt_npy', dist_map_transform, False)]" \
--scheduler=StealWeight --scheduler_params="{'to_steal': 0.01}"
$(RD)/gdl_3d_surface_steal: OPT = --losses="[('GeneralizedDice', {'idc': [0, 1]}, 1), \
('SurfaceLoss', {'idc': [1]}, 0.01)]"
$(RD)/gdl_3d_surface_steal: data/WMH/train/in_npy data/WMH/val/in_npy
$(RD)/gdl_3d_surface_steal: DATA = --folders="$(B_DATA)+[('gt_npy', gt_transform, True), \
('3d_distmap', raw_npy_transform, False)]" \
--scheduler=StealWeight --scheduler_params="{'to_steal': 0.01}"
$(RD)/surface: OPT = --losses="[('SurfaceLoss', {'idc': [1]}, 0.1)]"
$(RD)/surface: data/WMH/train/in_npy data/WMH/val/in_npy
$(RD)/surface: DATA = --folders="$(B_DATA)+[('gt_npy', dist_map_transform, False)]"
$(RD)/%:
$(info $(green)$(CC) $(CFLAGS) main.py $@$(reset))
rm -rf $@_tmp
mkdir -p $@_tmp
printenv > $@_tmp/env.txt
git diff > $@_tmp/repo.diff
git rev-parse --short HEAD > $@_tmp/commit_hash
$(CC) $(CFLAGS) main.py --dataset=$(dir $(<D)) --batch_size=$(BS) --in_memory --l_rate=0.001 --schedule \
--use_spacing \
--n_epoch=$(EPC) --workdir=$@_tmp --csv=metrics.csv --n_class=2 --modalities=2 --metric_axis 1 \
--grp_regex="$(G_RGX)" --network=$(NET) $(OPT) $(DATA) $(DEBUG)
mv $@_tmp $@
# Metrics
## Those need to be computed once the training is over, as we have to reconstruct the whole 3D volume
metrics: $(TRN) \
$(addsuffix /val_3d_dsc.npy, $(TRN)) \
$(addsuffix /val_3d_hausdorff.npy, $(TRN)) \
$(addsuffix /val_3d_hd95.npy, $(TRN))
$(RD)/%/val_3d_dsc.npy $(RD)/%/val_3d_hausdorff.npy $(RD)/%/val_3d_hd95.npy: data/WMH/val/gt | $(RD)/%
$(info $(green)$(CC) $(CFLAGS) metrics_overtime.py $@$(reset))
$(CC) $(CFLAGS) metrics_overtime.py --basefolder $(@D) --metrics 3d_dsc 3d_hausdorff 3d_hd95 \
--grp_regex "$(G_RGX)" --resolution_regex "$(P_RGX)" \
--spacing $(<D)/../spacing_3d.pkl \
--num_classes $(K) --n_epoch $(EPC) \
--gt_folder $^
hausdorff: $(TRN) \
$(addsuffix /val_hausdorff.npy, $(TRN))
$(RD)/%/val_hausdorff.npy: data/WMH/val/gt | $(RD)/%
$(info $(green)$(CC) $(CFLAGS) metrics_overtime.py $@$(reset))
$(CC) $(CFLAGS) metrics_overtime.py --basefolder $(@D) --metrics hausdorff \
--grp_regex "$(G_RGX)" --resolution_regex "$(P_RGX)" \
--spacing $(<D)/../spacing_3d.pkl \
--num_classes $(K) --n_epoch $(EPC) \
--gt_folder $^
boundary: $(TRN) \
$(addsuffix /val_boundary.npy, $(TRN))
$(RD)/%/val_boundary.npy: data/WMH/val/gt | $(RD)/%
$(info $(green)$(CC) $(CFLAGS) metrics_overtime.py $@$(reset))
$(CC) $(CFLAGS) metrics_overtime.py --basefolder $(@D) --metrics boundary \
--grp_regex "$(G_RGX)" --resolution_regex "$(P_RGX)" \
--spacing $(<D)/../spacing_3d.pkl \
--num_classes $(K) --n_epoch $(EPC) \
--gt_folder $^
# Plotting
$(RD)/tra_loss.png $(RD)/val_loss.png: COLS = 0 1
$(RD)/tra_loss.png $(RD)/val_loss.png: OPT = --ylim -1 1 --dynamic_third_axis --no_mean
$(RD)/tra_loss.png $(RD)/val_loss.png: plot.py $(TRN)
$(RD)/val_dice.png $(RD)/tra_dice.png: COLS = 1
$(RD)/val_dice.png $(RD)/tra_dice.png: plot.py $(TRN)
$(RD)/val_3d_hausdorff.png $(RD)/val_3d_hd95.png: COLS = 1
$(RD)/val_3d_hausdorff.png $(RD)/val_3d_hd95.png: OPT = --ylim 0 40 --min
$(RD)/val_3d_hausdorff.png $(RD)/val_3d_hd95.png: plot.py $(TRN)
$(RD)/val_dice_boxplot.png: COLS = 1
$(RD)/val_dice_boxplot.png: moustache.py $(TRN)
$(RD)/%.png: | metrics
$(info $(blue)$(CC) $(CFLAGS) $< $@$(reset))
$(eval metric:=$(subst _boxplot,,$(@F))) # Needed to use same recipe for both histogram and plots
$(eval metric:=$(subst _hist,,$(metric)))
$(eval metric:=$(subst .png,.npy,$(metric)))
$(CC) $(CFLAGS) $< --filename $(metric) --folders $(filter-out $<,$^) --columns $(COLS) \
--savefig=$@ --headless $(OPT) $(DEBUG)
# Viewing
view: $(TRN)
viewer/viewer.py -n 3 --img_source data/WMH/val/flair data/WMH/val/gt $(addsuffix /best_epoch/val, $^) --crop 10 \
--display_names gt $(shell basename -a -s '/' $^) $(DEBUG)
# viewer -n 3 --img_source data/WMH/val/flair data/WMH/val/gt $(addsuffix /iter000/val, $^) --crop 10 \
report: $(TRN) | metrics
$(info $(yellow)$(CC) $(CFLAGS) report.py$(reset))
$(CC) $(CFLAGS) report.py --folders $(TRN) --axises 1 --precision 3 \
--metrics val_dice val_hausdorff val_3d_dsc val_3d_hausdorff val_3d_hd95