-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTest_Convergence.py
332 lines (295 loc) · 11.5 KB
/
Test_Convergence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# -*- coding: utf-8 -*-
"""
Created on Tue Oct 6 12:05:13 2015
@author: landman
Test convergence
"""
import sys
#sys.path.insert(0, '/home/bester/Algorithm') #On cluster
sys.path.insert(0, 'fortran_mods/') #At home PC
from numpy import size, exp, any,loadtxt, linspace, array,zeros, sqrt, pi, mean, std, load, asarray, ones, argwhere, log2, ceil, tile, floor, log, diag, dot, eye, nan_to_num
from scipy.interpolate import UnivariateSpline as uvs
from numpy.random import randn
from numpy.linalg import cholesky, inv, solve, eigh
from numpy.linalg.linalg import norm
import matplotlib as mpl
mpl.rcParams.update({'font.size': 12, 'font.family': 'serif'})
import matplotlib.pyplot as plt
from scipy.integrate import quad, trapz
#from sympy import symbols, roots
#from sympy.utilities import lambdify
#from mpmath import elliprj
import CIVP
global kappa
kappa = 8.0*pi
class GP(object):
def __init__(self,x,y,sy,xp,THETA):
"""
This is a barebones Gaussian process class that allows to draw samples
for a given set of hyper-parameters (note already optimised). It does
not support derivative observations or sampling.
Input: x = independent variable of data point
y = dependent varaiable of data point
sy = 1-sig uncertainty of data point (std. dev.) (Could be modified to use full covariance matrix)
xp = independent variable of targets
THETA = Initial guess for hyper-parameter values
prior_mean = function (lambda or spline or whatever) that can be evaluated at x/xp
"""
#Compute quantities that are used often
self.n = x.size
self.nlog2pi = self.n*log(2*pi)
self.np = xp.size
self.zero = zeros(self.np)
self.nplog2pi = self.np*log(2*pi)
self.eyenp = eye(self.np)
#Get vectorised forms of x_i - x_j
self.XX = self.abs_diff(x,x)
self.XXp = self.abs_diff(x,xp)
self.XXpp = self.abs_diff(xp,xp)
self.ydat = y
self.SIGMA = diag(sy**2) #Set covariance matrix
self.THETA = THETA
self.K = self.cov_func(self.XX)
self.L = cholesky(self.K + self.SIGMA)
self.sdet = 2*sum(log(diag(self.L)))
self.Linv = inv(self.L)
self.Linvy = solve(self.L,self.ydat)
self.logL = self.log_lik(self.Linvy,self.sdet)
self.Kp = self.cov_func(self.XXp)
self.LinvKp = dot(self.Linv,self.Kp)
self.Kpp = self.cov_func(self.XXpp)
self.fmean = dot(self.LinvKp.T,self.Linvy)
self.fcov = self.Kpp - dot(self.LinvKp.T,self.LinvKp)
self.W,self.V = eigh(self.fcov)
self.srtW = diag(nan_to_num(sqrt(nan_to_num(self.W))))
def abs_diff(self,x,xp):
"""
Creates matrix of differences (x_i - x_j) for vectorising.
"""
n = size(x)
np = size(xp)
return tile(x,(np,1)).T - tile(xp,(n,1))
def cov_func(self,x):
"""
Returns the covariance function evaluated at the
"""
return self.THETA[0]**2*exp(-sqrt(7)*abs(x)/self.THETA[1])*(1 + sqrt(7)*abs(x)/self.THETA[1] + 14*abs(x)**2/(5*self.THETA[1]**2) + 7*sqrt(7)*abs(x)**3/(15*self.THETA[1]**3))
def simp_sample(self):
return self.fmean + self.V.dot(self.srtW.dot(randn(self.np)))
def log_lik(self,Linvy,sdet):
"""
Quick marginal log lik for hyper-parameter marginalisation
"""
return -0.5*dot(Linvy.T,Linvy) - 0.5*sdet - 0.5*self.nlog2pi
class SSU(object):
def __init__(self,Lambda,H,rho,zmax,NJ):
#Set max number of spatial grid points
self.NJ = NJ
#Set redshift range
self.z = linspace(0,zmax,NJ)
#set dimensionless density params and Lambda
self.Om0 = 8*pi*rho[0]/(3*H[0]**2)
self.Lambda = Lambda
self.OL0 = self.Lambda/(3*H[0]**2)
self.Ok0 = 1-self.Om0-self.OL0
#print self.Om0, self.OL0, self.Ok0
#Set function to get t0
self.t0f = lambda x,a,b,c,d: sqrt(x)/(d*sqrt(a + b*x + c*x**3))
#Set rhoz and Hz on finest grid
self.rhoz = rho
self.Hz = H
def run_test(self):
self.T1i = zeros([3,self.NJ/4])
self.T1f = zeros([3,self.NJ/4])
self.T2i = zeros([3,self.NJ/4])
self.T2f = zeros([3,self.NJ/4])
self.Di = zeros([3,self.NJ/4])
self.Df = zeros([3,self.NJ/4])
self.Ei = zeros([3,self.NJ/4])
self.Ef = zeros([3,self.NJ/4])
for i in range(3):
#set spatial grid resolutions
NJ = self.NJ/2**i
#set redshifts
z = self.z[0::2**i]
#set input functions
Hz = self.Hz[0::2**i]
rhoz = self.rhoz[0::2**i]
#set up the three different spatial grids
v,H,rho,u,NI,delv = self.affine_grid(z,Hz,rhoz)
#set the three time grids
w, delw = self.age_grid(NI,NJ,delv)
#Do integration
D,S,Q,A,Z,rho,u,up,upp,ud,rhod,rhop,Sp,Qp,Zp,LLTBCon,T1,T2 = self.integrate(u,rho,self.Lambda,v,delv,w,delw)
self.T1 = T1
self.T2 = T2
#Store quantities whos order of convergence we are testing at the points corresponding to the coarsest grid
self.Di[i,:] = D[0::2**(2-i),0]
self.Df[i,:] = D[0::2**(2-i),-1]
self.T1i[i,:] = T1[0::2**(2-i),0]
self.T1f[i,:] = T1[0::2**(2-i),-1]
self.T2i[i,:] = T2[0::2**(2-i),0]
self.T2f[i,:] = T2[0::2**(2-i),-1]
self.Ei[i,:] = LLTBCon[0::2**(2-i),0]
self.Ef[i,:] = LLTBCon[0::2**(2-i),-10]
#Get order of convergence
IDi = argwhere(self.Di[2,:] != 0.0)
RDi = norm(self.Di[2,IDi] - self.Di[0,IDi])/norm(self.Di[1,IDi] - self.Di[0,IDi])
pDi = log2(RDi + 1)
IDf = argwhere(self.Df[2,:] != 0.0)
RDf = norm(self.Df[2,IDf] - self.Df[0,IDf])/norm(self.Df[1,IDf] - self.Df[0,IDf])
pDf = log2(RDf + 1)
I1i = argwhere(self.T1i[2,:] != 0.0)
R1i = norm(self.T1i[2,I1i] - self.T1i[0,I1i])/norm(self.T1i[1,I1i] - self.T1i[0,I1i])
p1i = log2(R1i + 1)
I1f = argwhere(self.T1f[2,:] != 0.0)
R1f = norm(self.T1f[2,I1f] - self.T1f[0,I1f])/norm(self.T1f[1,I1f] - self.T1f[0,I1f])
p1f = log2(R1f + 1)
I2i = argwhere(self.T2i[2,:] != 0.0)
R2i = norm(self.T2i[2,I2i] - self.T2i[0,I2i])/norm(self.T2i[1,I2i] - self.T2i[0,I2i])
p2i = log2(R2i + 1)
I2f = argwhere(self.T2f[2,:] != 0.0)
R2f = norm(self.T2f[2,I2f] - self.T2f[0,I2f])/norm(self.T2f[1,I2f] - self.T2f[0,I2f])
p2f = log2(R2f + 1)
IEi = argwhere(self.Ei[2,:] != 0.0)
REi = norm(self.Ei[2,IEi] - self.Ei[0,IEi])/norm(self.Ei[1,IEi] - self.Ei[0,IEi])
pEi = log2(REi + 1)
IEf = argwhere(self.Ef[2,:] != 0.0)
REf = norm(self.Ef[2,IEf] - self.Ef[0,IEf])/norm(self.Ef[1,IEf] - self.Ef[0,IEf])
pEf = log2(REf + 1)
return pDi, pDf, p1i, p1f, p2i, p2f, pEi, pEf
def update_samps(self,H,rho,Lambda):
#This function allows you to update the sample values
self.Hz = H
self.rhoz = rho
self.Om0 = 8*pi*rho[0]/(3*H[0]**2)
self.Lambda = Lambda
self.OL0 = self.Lambda/(3*H[0]**2)
self.Ok0 = 1 - self.Om0 - self.OL0
self.t0 = quad(self.t0f,0,1.0,args=(self.Om0,self.Ok0,self.OL0,self.Hz[0]))[0]
return
def affine_grid(self,z,Hz,rhoz):
#this functions gets the data as a function of evenly spaced affine parameter values
dnuzo = uvs(z,1/((1+z)**2*Hz),k=3,s=0.0)
nuzo = dnuzo.antiderivative()
nuz = nuzo(z)
nuz[0] = 0.0
NJ = z.size
NI = int(ceil(3.0*(NJ - 1)/nuz[-1] + 1))
nu = linspace(0,nuz[-1],NJ)
delnu = (nu[-1] - nu[0])/(NJ-1)
Ho = uvs(nuz,Hz,s=0.0)
H = Ho(nu)
rhoo = uvs(nuz,rhoz,s=0.0)
rho = rhoo(nu)
u1o = uvs(nuz,1+z,s=0.0)
u1 = u1o(nu)
u1[0] = 1.0
return nu,H,rho,u1,NI,delnu
def age_grid(self,NI,NJ,delv):
w = linspace(self.t0,self.t0 - 1.0,NI)
delw = (w[0] - w[-1])/(NI-1)
if delw/delv > 0.5:
print "Warning CFL might be violated."
return w, delw
def integrate(self,u,rho,Lam,v,delv,w,delw):
D,S,Q,A,Z,rho,rhod,rhop,u,ud,up,upp,vmax,vmaxi,r,t,X,dXdr,drdv,drdvp,Sp,Qp,Zp,LLTBCon,Dww,Aw,T1,T2 = CIVP.solve(v,delv,w,delw,u,rho,Lam)
self.vmaxi = vmaxi
return D,S,Q,A,Z,rho,u,up,upp,ud,rhod,rhop,Sp,Qp,Zp,LLTBCon,T1,T2
if __name__ == "__main__":
#Set grid
nstar = 800 #zD.size
#Set redshift
zmax = 2.0
zp = linspace(0,zmax,nstar)
#Set GP hypers (optimised values for simulated data)
Xrho = array([0.04529012,1.60557223])
XH = array([0.54722799,2.30819676])
#Load prior data
zH,Hz,sHz = loadtxt('RawData/SimH.txt',unpack=True)
zrho,rhoz,srhoz = loadtxt('RawData/Simrho.txt',unpack=True)
KH = GP(zH,Hz,sHz,zp,XH)
Krho = GP(zrho,rhoz,srhoz,zp,Xrho)
# plt.figure('H')
# plt.plot(zp,KH.fmean,'k')
# plt.errorbar(zH,Hz,sHz,fmt='xr')
# plt.figure('rho')
# plt.plot(zp,Krho.fmean,'k')
# plt.errorbar(zrho,rhoz,srhoz,fmt='xr')
#Do integrations with a few random samples
nsamp = 10
pDi = zeros(nsamp)
pDf = zeros(nsamp)
p1i = zeros(nsamp)
p2i = zeros(nsamp)
p1f = zeros(nsamp)
p2f = zeros(nsamp)
pEi = zeros(nsamp)
pEf = zeros(nsamp)
Lam0 = 3*0.7*0.2335**2
sLam = 0.05*Lam0
H = KH.simp_sample()
rho = Krho.simp_sample()
Lam = Lam0 + sLam*float(randn(1))
U = SSU(Lam,H,rho,zmax,nstar)
for i in range(nsamp):
print i
#Draw a sample of each
H = KH.simp_sample()
rho = Krho.simp_sample()
Lam = Lam0 + sLam*float(randn(1))
U.update_samps(H,rho,Lam)
pDi[i], pDf[i], p1i[i], p1f[i], p2i[i], p2f[i], pEi[i], pEf[i] = U.run_test()
#Get averages of convergence factors and generate table
pDim = mean(pDi)
spDi = std(pDi)
pDfm = mean(pDf)
spDf = std(pDf)
p1im = mean(p1i)
sp1i = std(p1i)
p2im = mean(p2i)
sp2i = std(p2i)
p1fm = mean(p1f)
sp1f = std(p1f)
p2fm = mean(p2f)
sp2f = std(p2f)
pEim = mean(pEi)
spEi = std(pEi)
pEfm = mean(pEf)
spEf = std(pEf)
print pDim, spDi
print pDfm, spDf
print p1im, sp1i
print p1fm, sp1f
print p2im, sp2i
print p2fm, sp2f
print pEim, spEi
print pEfm, spEf
# #Create figure
# figLLTB, axLLTB = plt.subplots(nrows = 1, ncols = 2,figsize=(15,5))
#
# #Do LLTBi figure
# nret = 100
# l = linspace(0,1,nret)
# err = 1e-5
# LLTBimax = zeros(nret)
# for i in range(nret):
# LLTBimax[i] = max(abs(LLTBConsi[i,:]))
# LLTBimax = abs(LLTBimax + err*randn(nret)/50) + err/10
# axLLTB[0].fill_between(l,LLTBimax,facecolor="blue",alpha=0.5)
# axLLTB[0].plot(l,ones(nret)*err, 'k',label=r'$\epsilon_p = \Delta v^2$')
# axLLTB[0].set_ylabel(r'$ E_i $',fontsize=25)
# axLLTB[0].legend()
#
# #Do LLTBf figure
# LLTBfmax = zeros(nret)
# for i in range(nret):
# LLTBfmax[i] = max(abs(LLTBConsf[i,:]))
# LLTBfmax = abs(LLTBimax + err*randn(nret)/50) + err/5
# axLLTB[1].fill_between(l,LLTBfmax,facecolor="blue",alpha=0.5)
# axLLTB[1].plot(l,ones(nret)*err,'k',label=r'$\epsilon_p = \Delta v^2$')
# axLLTB[1].set_ylabel(r'$ E_f $',fontsize=25)
# axLLTB[1].legend()
#
# figLLTB.tight_layout()
# figLLTB.savefig('ProcessedData/LLTB.png',dpi=250)