-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathall_TELT_mix.py
297 lines (246 loc) · 13.7 KB
/
all_TELT_mix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
'''
2024.5.9: consider the consistency of transformed images (colorjitter)
2024.5.23: set random transformation from flip, rotate, color, scale.
set the selection mode to mix, i.e., mixing all the transformations
'''
import argparse
import time
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from utils.tools import *
from tensorboardX import SummaryWriter
from metrics import AverageMeter
from tqdm import tqdm
from allconfig import get_arguments, get_model, get_train_testloader, init_seeds
from treefilter.tree_energy_loss import CEandTreeEnergyLoss
from utils import ramps
# from torchvision import transforms
# color_trans = transforms.ColorJitter(0.5,0.5,0.5,0.2)
# imagenet_mean = np.array([0.485, 0.456, 0.406])
# imagenet_std = np.array([0.229, 0.224, 0.225])
# imagenet_mean_torch = torch.from_numpy(imagenet_mean).float().reshape((1, 3, 1, 1))
# imagenet_std_torch = torch.from_numpy(imagenet_std).float().reshape((1, 3, 1, 1))
import torchvision.transforms.functional as TF
import copy
def main():
# Fixed
cudnn.enabled = True
cudnn.benchmark = True
init_seeds()
# Setup parameters
args = get_arguments()
model = get_model(args)
src_loader, test_loader = get_train_testloader(args)
# Setup writers
f = open(args.snapshot_dir + f'{args.city}Seg_log.txt', 'w')
# save args
argsDict = args.__dict__
f.writelines('------------------ start ------------------' + '\n')
for eachArg, value in argsDict.items():
f.writelines(eachArg + ' : ' + str(value) + '\n')
f.writelines('------------------- end -------------------')
f.flush()
writer = SummaryWriter(logdir=args.snapshot_dir)
w, h = map(int, args.input_size_test.split(','))
input_size_test = (w, h)
w, h = map(int, args.input_size_train.split(','))
input_size_train = (w, h)
# resume
init_iter_index = 0
resume = os.path.join(args.snapshot_dir, f'{args.city}_batch_checkpoint.pth')
if os.path.exists(resume):
print('restore weight')
resume_weight = torch.load(resume)
model.load_state_dict(resume_weight['state_dict'])
init_iter_index = resume_weight['batch_index']
model.train()
model = model.cuda()
optimizer = optim.SGD(model.parameters(),
lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
optimizer.zero_grad()
# interpolation for the probability maps and labels
interp_train = nn.Upsample(size=(input_size_train[1], input_size_train[0]), mode='bilinear')
interp_test = nn.Upsample(size=(input_size_test[1], input_size_test[0]), mode='bilinear')
loss_hist = [AverageMeter() for _ in range(5)] # np.zeros((args.num_steps_stop,5))
F1_best = 0.6
iter_best = 0
L_seg = CEandTreeEnergyLoss(ignore_index=255, sigma=args.tel_sigma)
L_con = nn.MSELoss()
L_ce = nn.CrossEntropyLoss(ignore_index=255)
pbar = tqdm(range(args.num_steps_stop), disable=False)
for batch_index, src_data in enumerate(src_loader):
if batch_index==args.num_steps_stop:
break
tem_time = time.time()
model.train()
optimizer.zero_grad()
lr = adjust_learning_rate(optimizer,args.learning_rate,batch_index,args.num_steps
, power=args.learning_power)
images, labels, ori_img, croppings, images_trans = src_data
pb_ori = model(images.cuda())
# Segmentation Loss
labels = labels.cuda().long()
ori_img = (ori_img.float()/255.0) # .cuda()
croppings =croppings.cuda()
L_seg_value = L_seg(pb_ori[0], ori_img.cuda(), pb_ori[1], croppings, labels) # preds, low_feats, high_feats, unlabeled_ROIs, target
########################## randomly select augmentation composition ##################
# t: transform times, p: transform list, v: transform parameters
trans_t = np.random.randint(1, 5, size=1)[0] # [1, 4]
trans_p = np.random.choice(['flip', 'scale', 'color', 'rotate'], size=trans_t)
labels_trans = labels.clone().unsqueeze(1) # N 1 H W
preds = nn.functional.interpolate(pb_ori[0], size=(h, w), mode='bilinear', align_corners=True)
preds = preds.softmax(dim=1)
preds_ori_trans = preds.clone()
# color transform
if 'color' not in trans_p:
images_trans = images.clone() # original images, grad sharing, but memory not
# flip consistency
if 'flip' in trans_p:
flip_dim = np.random.randint(2,4) # N C H W
images_trans = torch.flip(images_trans, dims=[flip_dim])
preds_ori_trans = torch.flip(preds_ori_trans, dims=[flip_dim])
labels_trans = torch.flip(labels_trans, dims=[flip_dim])
# scale consistency: change scale to [0.75, 1.5]
if 'scale' in trans_p:
scale_factor = np.random.choice([0.75, 1.5], size=1)[0]
images_trans = nn.functional.interpolate(images_trans, scale_factor=scale_factor, mode='bilinear', align_corners=True)
# rotate consistency: random select angle from [-90, 90]
if 'rotate' in trans_p:
angle = np.random.randint(-90, 90, size=1)[0]
images_trans = TF.rotate(images_trans, angle=float(angle), interpolation=TF.InterpolationMode.BILINEAR, fill=0)
# # rotate original image, labels
preds_ori_trans = TF.rotate(preds_ori_trans, angle=float(angle), interpolation=TF.InterpolationMode.BILINEAR, fill=0)
labels_trans = TF.rotate(labels_trans, angle=float(angle), interpolation=TF.InterpolationMode.NEAREST, fill=255)
# calculate consistency loss
preds_trans = model(images_trans.cuda())[0]
preds_trans = nn.functional.interpolate(preds_trans, size=(h, w), mode='bilinear', align_corners=True)
L_con_value = L_con(preds_trans.softmax(dim=1), preds_ori_trans)
L_ce_value = L_ce(preds_trans, labels_trans.squeeze(1))
total_loss = L_seg_value + L_con_value + L_ce_value
total_loss.backward()
optimizer.step()
pb_output_pred = nn.functional.interpolate(pb_ori[0], size=(h, w), mode='bilinear', align_corners=True)
_, predict_labels = torch.max(pb_output_pred, 1)
lbl_pred = predict_labels.detach().cpu().numpy()
lbl_true = labels.detach().cpu().numpy()
metrics_batch = []
for lt, lp in zip(lbl_true, lbl_pred):
_,_,mean_iu,_ = label_accuracy_score(lt, lp, n_class=args.num_classes)
metrics_batch.append(mean_iu)
miou = np.nanmean(metrics_batch, axis=0)
batch_size = images.shape[0]
loss_hist[0].update(L_seg_value.item(), batch_size)
loss_hist[1].update(L_con_value.item(), batch_size)
loss_hist[2].update(L_ce_value.item(), batch_size)
loss_hist[3].update(miou, batch_size)
loss_hist[4].update(total_loss.item(), batch_size)
if (batch_index+1) % 10 == 0:
#print('Iter %d/%d time: %.2f miou = %.1f L_seg = %.3f L_exp = %.3f L_con = %.3f'%(batch_index+1,args.num_steps,np.mean(loss_hist[batch_index-9:batch_index+1,-1]),np.mean(loss_hist[batch_index-9:batch_index+1,3])*100,np.mean(loss_hist[batch_index-9:batch_index+1,0]),np.mean(loss_hist[batch_index-9:batch_index+1,1]),np.mean(loss_hist[batch_index-9:batch_index+1,2])))
f.write('Iter %d/%d Loss = %.3f miou = %.1f L_seg = %.3f L_con = %.3f L_ce = %.3f\n'%
(batch_index+1,args.num_steps,loss_hist[4].avg, loss_hist[3].avg*100,loss_hist[0].avg,loss_hist[1].avg,loss_hist[2].avg))
f.flush()
pbar.set_description(
'Train Iter:{batch:4}|{iter:4}. Loss {loss:.3f}. miou {miou:.3f}. Lseg {Lseg:.3f}. Lcon {Lcon:.3f}. Lce {Lce:.3f}.'.format(
batch=batch_index, iter=args.num_steps_stop, loss=loss_hist[4].avg, miou=loss_hist[3].avg,
Lseg=loss_hist[0].avg, Lcon=loss_hist[1].avg, Lce=loss_hist[2].avg))
pbar.update()
writer.add_scalar('lr', lr, batch_index)
writer.add_scalar('train/loss', loss_hist[4].avg, batch_index)
writer.add_scalar('train/miou', loss_hist[3].avg, batch_index)
writer.add_scalar('train/lseg', loss_hist[0].avg, batch_index)
writer.add_scalar('train/lcon', loss_hist[1].avg, batch_index)
writer.add_scalar('train/lce', loss_hist[2].avg, batch_index)
# evaluation per 100 iterations
if (batch_index+1) % 100 == 0:
model.eval()
TP_all = np.zeros((args.num_classes, 1))
FP_all = np.zeros((args.num_classes, 1))
TN_all = np.zeros((args.num_classes, 1))
FN_all = np.zeros((args.num_classes, 1))
n_valid_sample_all = 0
F1 = np.zeros((args.num_classes, 1))
IoU = np.zeros((args.num_classes, 1))
for index, batch in enumerate(test_loader):
image, label,_, name = batch
label = label.squeeze().numpy()
img_size = image.shape[2:]
block_size = input_size_test
min_overlap = 40
# crop the test images into 128×128 patches
y_end,x_end = np.subtract(img_size, block_size)
x = np.linspace(0, x_end, int(np.ceil(x_end/np.float64(block_size[1]-min_overlap)))+1, endpoint=True).astype('int')
y = np.linspace(0, y_end, int(np.ceil(y_end/np.float64(block_size[0]-min_overlap)))+1, endpoint=True).astype('int')
test_pred = np.zeros(img_size)
for j in range(len(x)):
for k in range(len(y)):
r_start,c_start = (y[k],x[j])
r_end,c_end = (r_start+block_size[0],c_start+block_size[1])
image_part = image[0,:,r_start:r_end, c_start:c_end].unsqueeze(0).cuda()
with torch.no_grad():
pb = model(image_part)
# _,pred = torch.max(interp_test(nn.functional.softmax(pb,dim=1)+nn.functional.softmax(pe,dim=1)).detach(), 1)
pred = torch.argmax(
interp_test(nn.functional.softmax(pb, dim=1)).detach(),
1)
pred = pred.squeeze().data.cpu().numpy()
if (j==0)and(k==0):
test_pred[r_start:r_end, c_start:c_end] = pred
elif (j==0)and(k!=0):
test_pred[r_start+int(min_overlap/2):r_end, c_start:c_end] = pred[int(min_overlap/2):,:]
elif (j!=0)and(k==0):
test_pred[r_start:r_end, c_start+int(min_overlap/2):c_end] = pred[:,int(min_overlap/2):]
elif (j!=0)and(k!=0):
test_pred[r_start+int(min_overlap/2):r_end, c_start+int(min_overlap/2):c_end] = pred[int(min_overlap/2):,int(min_overlap/2):]
#print(index+1, '/', len(test_loader), ': Testing ', name)
# evaluate one image
TP,FP,TN,FN,n_valid_sample = eval_image(test_pred.reshape(-1),label.reshape(-1),args.num_classes)
TP_all += TP
FP_all += FP
TN_all += TN
FN_all += FN
n_valid_sample_all += n_valid_sample
OA = np.sum(TP_all)*1.0 / n_valid_sample_all
for i in range(args.num_classes):
P = TP_all[i]*1.0 / (TP_all[i] + FP_all[i] + args.epsilon)
R = TP_all[i]*1.0 / (TP_all[i] + FN_all[i] + args.epsilon)
F1[i] = 2.0*P*R / (P + R + args.epsilon)
IoU[i] = TP_all[i]*1.0 / (TP_all[i] + FP_all[i] + FN_all[i] + args.epsilon)
for i in range(args.num_classes):
f.write('===>' + args.name_classes[i] + ': %.2f\n'%(float(F1[i]) * 100))
print('===>' + args.name_classes[i] + ': %.2f'%(float(F1[i]) * 100))
mF1 = np.mean(F1)
mIoU = np.mean(IoU)
f.write('===> mean F1: %.2f mean IoU: %.2f OA: %.2f\n'%(mF1*100,mIoU*100,OA*100))
print('===> mean F1: %.2f mean IoU: %.2f OA: %.2f'%(mF1*100,mIoU*100,OA*100))
writer.add_scalar('test/f1', mF1, batch_index)
writer.add_scalar('test/miou', miou, batch_index)
writer.add_scalar('test/oa', OA, batch_index)
# save every validation
model_name = f'{args.city}_batch_checkpoint.pth'
torch.save({'state_dict': model.state_dict(),
'batch_index': batch_index+1}, os.path.join(
args.snapshot_dir, model_name))
if mF1>F1_best:
# save the current models
f.write('Save Model\n')
print('Save Model')
model_name = f'{args.city}_batch'+repr(batch_index+1)+'mF1_'+repr(int(mF1*10000))+'.pth'
torch.save(model.state_dict(), os.path.join(
args.snapshot_dir, model_name))
# delete the previous weights
oldfile = os.path.join(args.snapshot_dir, f'{args.city}_batch'+repr(iter_best+1)+'mF1_'+repr(int(F1_best*10000))+'.pth')
if os.path.exists(oldfile):
os.remove(oldfile)
F1_best = copy.deepcopy(mF1)
iter_best = copy.deepcopy(batch_index)
f.close()
pbar.close()
# save the last one
model_name = f'{args.city}_batch' + repr(batch_index + 1) + 'mF1_' + repr(int(mF1 * 10000)) + '.pth'
torch.save(model.state_dict(), os.path.join(
args.snapshot_dir, model_name))
if __name__ == '__main__':
main()