-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathall_calc_dataset.py
112 lines (94 loc) · 4.34 KB
/
all_calc_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
'''
2024.6.19: calculate the class distribution of training dataset
'''
import cv2
import os
import argparse
from dataset.vaihingen_dataset_cv2 import VaihingenDataSet
import numpy as np
import pandas as pd
DATA_PATH_HOME = '/localssd/yinxia/data'
SAVE_WEIGHT_PATH = '/localssd/yinxia/CRGNetdata/'
IGNORE_VALUE = 255
def get_args(city="Vaihingen"):
parser = argparse.ArgumentParser()
parser.add_argument("--city", default=city)
args = parser.parse_args()
# dataset
if args.city=="Vaihingen":
args.data_dir_train = f'{DATA_PATH_HOME}/Vaihingen/'
args.data_dir_val = args.data_dir_test = args.data_dir_train
args.train_list = f'./dataset/{args.city.lower()}_train.txt'
args.test_list = args.val_list =f'./dataset/{args.city.lower()}_test.txt'
args.name_classes = ['impervious surfaces', 'buildings', 'low vegetation', 'trees', 'cars']
# BGR
args.palette = [(255, 255, 255), (255, 0, 0), (255, 255, 0), (0, 255, 0), (0, 255, 255), (0, 0, 255), (0, 0, 0)]
elif args.city=="Zurich":
args.data_dir_train = f'{DATA_PATH_HOME}/Zurich/'
args.data_dir_val = args.data_dir_test = args.data_dir_train
args.train_list = f'./dataset/{args.city.lower()}_train.txt'
args.test_list = args.val_list = f'./dataset/{args.city.lower()}_test.txt'
args.name_classes = ['Roads', 'Buildings', 'Trees', 'Grass', 'Bare Soil', 'Water', 'Rails', 'Pools']
args.palette = [(0, 0, 0), (100, 100, 100), (0, 125, 0), (0, 255, 0), (0, 80, 150),
(150, 0, 0), (0, 255, 255), (255, 150, 150), (255, 255, 255)]
elif args.city=="uavid":
args.data_dir_train = f'{DATA_PATH_HOME}/uavid/uavid_train/' # for training
args.data_dir_val = f'{DATA_PATH_HOME}/uavid/uavid_val/' # for validation: select 7 images, each for each video
args.data_dir_test = f'{DATA_PATH_HOME}/uavid/uavid_test/'
args.train_list = f'./dataset/{args.city.lower()}_train.txt'
args.val_list = f'./dataset/{args.city.lower()}_val.txt'
args.test_list = f'./dataset/{args.city.lower()}_test.txt'
args.name_classes = ['Building', 'Road', 'Tree', 'LowVeg', 'Cars'] # only consider five classes
args.input_size_train = '1024, 1024'
args.input_size_test = '1024, 1024'
args.batch_size = 8
args.num_workers = 4
args.cache = True # False
args.palette = [(0, 0, 128), (128, 64, 128), (0, 128, 0), (0, 128, 128), (128, 0, 64), (192, 0, 192),
(0, 64, 64), (0, 0, 0)]
# if 'TELT' in args.method:
# args.batch_size = 4
# args.num_workers = 4
else:
raise ValueError('unknown city')
args.num_classes = len(args.name_classes)
return args
def calclass(filelist, num_classes):
num = len(filelist)
stats = np.zeros((num, num_classes+1), dtype=np.uint64)
namelist = []
for idx, file in enumerate(filelist):
namelist.append(file['name'])
label = cv2.imread(file['label'], cv2.IMREAD_UNCHANGED).flatten()
# the total values
stats[idx, -1] = label.size
label = label[label!=IGNORE_VALUE]
unique, counts = np.unique(label, return_counts=True)
stats[idx, unique] = counts
return stats, namelist
if __name__=="__main__":
savepath = './dataset/stats'
os.makedirs(savepath, exist_ok=True)
# city =
# city =
citylist = ["Vaihingen","Zurich", "uavid"]
for city in citylist:
args = get_args(city)
num_classes = int(args.num_classes)
# train with all labels # train with point labels # test with all labels
datasetlist = [VaihingenDataSet(args.data_dir_train, args.train_list, mode=0),
VaihingenDataSet(args.data_dir_train, args.train_list, mode=1, id=1),
VaihingenDataSet(args.data_dir_test, args.test_list, mode=0)]
suffixlist = ['trainall', 'trainpoint', 'testall']
# calculate each type
for idx, dataset in enumerate(datasetlist):
filelist = dataset.files
# print(filelist[0])
# print(len(filelist))
stats, namelist = calclass(filelist,num_classes)
#
savefile = os.path.join(savepath, f'{city}_{suffixlist[idx]}.csv')
#
df = pd.DataFrame(stats)
df['name'] = namelist
df.to_csv(savefile)