-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathallconfig.py
386 lines (342 loc) · 18.3 KB
/
allconfig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
'''
config for general models
'''
import argparse
import os
from torch.utils import data
import torch
import random
import numpy as np
DATA_PATH_HOME = '/localssd/yinxia/data'
SAVE_WEIGHT_PATH = '/localssd/yinxia/CRGNetdata/'
def get_arguments():
modename = ["full", "point"]
parser = argparse.ArgumentParser(description="CRGNet")
# dataset
parser.add_argument("--city", type=str, default='Vaihingen',
help="Vaihingen, Zurich")
# add train/val data path, 2024.5.14
parser.add_argument("--data_dir_train", type=str, default='/home/yinxia/data',
help="Vaihingen, Zurich")
parser.add_argument("--data_dir_val", type=str, default='/home/yinxia/data',
help="Vaihingen, Zurich")
parser.add_argument("--data_dir_test", type=str, default='/home/yinxia/data',
help="Vaihingen, Zurich")
parser.add_argument("--cache", type=bool, default=True, help="cache in dataloader")
parser.add_argument("--ignore_label", type=int, default=255,
help="the index of the label ignored in the training.")
parser.add_argument("--input_size_train", type=str, default='256,256',
help="width and height of input training images.")
parser.add_argument("--input_size_test", type=str, default='256,256',
help="width and height of input test images.")
parser.add_argument("--mode", type=int, default=1, # set to point
help="annotation type (0-full, 1-point).")
parser.add_argument("--id", type=int, default=1,
help="annotator id).")
# network
parser.add_argument("--backbone", default="effiSAM", help="effiSAM, unetformer, vgg16")
parser.add_argument("--method", default="CRGNet", help="CRGNet, TFCSD, FESTA, TEL, UTEL, UTELT"
"baseline, oracle")
parser.add_argument("--device", type=str, default='cuda',
help="cuda, cpu")
parser.add_argument("--epsilon", type=float, default=1e-14,
help="avoid zero")
parser.add_argument("--batch_size", type=int, default=32,
help="number of images in each batch.")
parser.add_argument("--num_workers", type=int, default=8,
help="number of workers for multithread dataloading.")
parser.add_argument("--learning_rate", type=float, default=0.001,
help="base learning rate.")
parser.add_argument("--learning_power", type=float, default=0.9, # add
help="base learning rate.")
parser.add_argument("--num_steps", type=int, default=5000,
help="Number of training steps.")
parser.add_argument("--num_steps_stop", type=int, default=5000,
help="Number of training steps for early stopping.")
parser.add_argument("--restore_from", type=str, default='./weights/fcn8s_from_caffe.pth',
help="pretrained VGG-16 model.")
parser.add_argument("--weight_decay", type=float, default=5e-4,
help="regularisation parameter for L2-loss.")
parser.add_argument("--momentum", type=float, default=0.9,
help="Momentum component of the optimiser.")
parser.add_argument("--tau", type=float, default=0.95,
help="prob tau.")
parser.add_argument("--lambda_con", type=float, default=1,
help="consistency weight.")
# TEL parameters
parser.add_argument("--tel_sigma", type=float, default=0.002,
help="0.002 for TEL")
# Uncertainty threshold
parser.add_argument("--Tuncert", type=float, default=0.9,
help="threshold for uncertainty")
# samplerate for CRGNet
parser.add_argument("--samplerate", type=int, default=4,
help="the input v.s. the output ")
# add a subdir
parser.add_argument("--subdir", type=str, default='',
help="the additional subdir, e.g, scale/")
# add restore_iter: for testing
parser.add_argument("--restore_iter", type=int, default=5000,
help="the restore iter")
parser.add_argument("--palette", default=[(0,0,0)])
# additional savedir
parser.add_argument("--suffix", default='')
# color transform
parser.add_argument("--iscolor", default=False, help="apply colortans to images")
# restore path
parser.add_argument("--restore_path", type=str, default=None,
help="the restore iter")
# log_num_classes
parser.add_argument("--log_num_classes", type=int, default=None,
help="the restore iter")
# create dirs
parser.add_argument("--makedirs", default=True)
args = parser.parse_args()
# dataset
if args.city=="Vaihingen":
args.data_dir_train = f'{DATA_PATH_HOME}/Vaihingen/'
args.data_dir_val = args.data_dir_test = args.data_dir_train
args.train_list = f'./dataset/{args.city.lower()}_train.txt'
args.test_list = args.val_list =f'./dataset/{args.city.lower()}_test.txt'
args.name_classes = ['impervious surfaces', 'buildings', 'low vegetation', 'trees', 'cars']
# BGR
args.palette = [(255, 255, 255), (255, 0, 0), (255, 255, 0), (0, 255, 0), (0, 255, 255), (0, 0, 255), (0, 0, 0)]
elif args.city=="Zurich":
args.data_dir_train = f'{DATA_PATH_HOME}/Zurich/'
args.data_dir_val = args.data_dir_test = args.data_dir_train
args.train_list = f'./dataset/{args.city.lower()}_train.txt'
args.test_list = args.val_list = f'./dataset/{args.city.lower()}_test.txt'
args.name_classes = ['Roads', 'Buildings', 'Trees', 'Grass', 'Bare Soil', 'Water', 'Rails', 'Pools']
args.palette = [(0, 0, 0), (100, 100, 100), (0, 125, 0), (0, 255, 0), (0, 80, 150),
(150, 0, 0), (0, 255, 255), (255, 150, 150), (255, 255, 255)]
elif args.city=="uavid":
args.data_dir_train = f'{DATA_PATH_HOME}/uavid/uavid_train/' # for training
args.data_dir_val = f'{DATA_PATH_HOME}/uavid/uavid_val/' # for validation: select 7 images, each for each video
args.data_dir_test = f'{DATA_PATH_HOME}/uavid/uavid_test/'
args.train_list = f'./dataset/{args.city.lower()}_train.txt'
args.val_list = f'./dataset/{args.city.lower()}_val.txt'
args.test_list = f'./dataset/{args.city.lower()}_test.txt'
args.name_classes = ['Building', 'Road', 'Tree', 'LowVeg', 'Cars'] # only consider five classes
args.input_size_train = '1024, 1024'
args.input_size_test = '1024, 1024'
if args.batch_size>=8:
args.batch_size = 8
args.num_workers = 4
args.cache = True # False
args.palette = [(0, 0, 128), (128, 64, 128), (0, 128, 0), (0, 128, 128), (128, 0, 64), (192, 0, 192),
(0, 64, 64), (0, 0, 0)]
# if 'TELT' in args.method:
# args.batch_size = 4
# args.num_workers = 4
else:
raise ValueError('unknown city')
args.num_classes = len(args.name_classes)
# add
if args.log_num_classes == None:
args.log_num_classes = args.num_classes
# tel_sigma
tel_sigma=''
if args.tel_sigma>0.002:
tel_sigma = '_sigma'+str(args.tel_sigma)
# learning rate
if 'SAM' in args.backbone:
args.learning_rate = 0.1
args.learning_power = 3.0
# samplerate: 8 for BaseNet, the original network
sr=''
if (args.backbone =="FCNcls") and (args.method=="CRGNet"):
args.samplerate = 8
sr = '_sr'+str(args.samplerate)
Tuncert = ''
if args.Tuncert !=0.9:
Tuncert = '_tu'+str(args.Tuncert)
# Result
args.snapshot_dir = SAVE_WEIGHT_PATH + (f'{args.city}/{args.backbone}{args.subdir}/{args.method}_{modename[args.mode]}_'
f'{args.id}{tel_sigma}{sr}{Tuncert}') + f'{args.suffix}'+'/'
if args.makedirs:
if args.restore_path is None:
if os.path.exists(args.snapshot_dir):
print(args.snapshot_dir)
raise ValueError('snapshot_dir exist! and stop')
else:
os.makedirs(args.snapshot_dir, exist_ok=True)
#os.makedirs(args.snapshot_dir, exist_ok=True)
return args
def get_model(args):
w, h = map(int, args.input_size_train.split(','))
if args.backbone=="effiSAM":
model_name = 'l0'
weight_url = f'{SAVE_WEIGHT_PATH}/weights/sam/l0.pt'
if args.method in ["baseline", "oracle", "oracle_lovaz", "dCRF"]:
from efficientvit.SAMseg import SAM_seg
model = SAM_seg(model_name=model_name, weight_url=weight_url,
imgsz=h, device=args.device, num_classes=args.num_classes)
elif args.method in ["TEL", "UTEL", "UTELT", "BUTELT", "TELT"]:
from efficientvit.SAMseg import SAM_seg_tree
model = SAM_seg_tree(model_name=model_name, weight_url=weight_url,
imgsz=h, device=args.device, num_classes=args.num_classes)
elif args.method in ["CRGNet"]:
from efficientvit.SAMseg import SAM_seg_2dec
model = SAM_seg_2dec(model_name=model_name, weight_url=weight_url,
imgsz=h, device=args.device, num_classes=args.num_classes)
elif args.method in ["TFCSD"]:
from efficientvit.SAMseg import SAM_seg_tree_2dec_TFCSD
model = SAM_seg_tree_2dec_TFCSD(model_name=model_name, weight_url=weight_url,
imgsz=h, device=args.device, num_classes=args.num_classes)
elif args.method in ["FESTA", "AGMM"]:
from efficientvit.SAMseg import SAM_seg_FESTA
model = SAM_seg_FESTA(model_name=model_name, weight_url=weight_url,
imgsz=h, device=args.device, num_classes=args.num_classes)
else:
raise ValueError("invalid method")
elif args.backbone=="unetformer":
if args.method in ["baseline", "oracle", "oracle_lovaz", "dCRF"]:
from SAM_RS.model.UNetFormer import UNetFormer
model = UNetFormer(num_classes=args.num_classes)
elif args.method in ["TEL", "UTEL", "UTELT", "BUTELT", "TELT"]:
from SAM_RS.model.UNetFormer import UNetFormerTree
model = UNetFormerTree(num_classes=args.num_classes)
elif args.method in ["CRGNet"]:
from SAM_RS.model.UNetFormer import UNetFormer_2dec
model = UNetFormer_2dec(num_classes=args.num_classes)
elif args.method in ["TFCSD"]:
from SAM_RS.model.UNetFormer import UNetFormerTree_2dec_TFCSD
model = UNetFormerTree_2dec_TFCSD(num_classes=args.num_classes)
elif args.method in ["FESTA", "AGMM"]:
from SAM_RS.model.UNetFormer import UNetFormer_FESTA
model = UNetFormer_FESTA(num_classes=args.num_classes)
else:
raise ValueError("invalid method")
elif args.backbone=="FCNunet":
backbone = "vgg16_bn"
if args.method in ["baseline", "oracle", "oracle_lovaz"]:
from TFCSD.FCN_backbone import FCNs_VGG_ASPP_4conv1
model = FCNs_VGG_ASPP_4conv1(in_ch=3, out_ch=args.num_classes, backbone=backbone, pretrained=True)
elif args.method in ["TEL", "UTEL", "UTELT", "BUTELT", "TELT"]:
from TFCSD.FCN_backbone import FCNs_VGG_ASPP_4conv1_tree
model = FCNs_VGG_ASPP_4conv1_tree(in_ch=3, out_ch=args.num_classes, backbone=backbone, pretrained=True)
# elif args.method in ["CRGNet"]:
# from TFCSD.FCN_backbone import FCNs_VGG_ASPP_4conv1_2dec
# model = FCNs_VGG_ASPP_4conv1_2dec(in_ch=3, out_ch=args.num_classes, backbone=backbone, pretrained=True)
elif args.method in ["TFCSD"]:
from TFCSD.FCN_backbone import FCNs_VGG_ASPP_4conv1_TFCSD
model = FCNs_VGG_ASPP_4conv1_TFCSD(in_ch=3, out_ch=args.num_classes, backbone=backbone, pretrained=True)
elif args.method in ["FESTA"]:
from TFCSD.FCN_backbone import FCNs_VGG_ASPP_4conv1_FESTA
model = FCNs_VGG_ASPP_4conv1_FESTA(in_ch=3, out_ch=args.num_classes, backbone=backbone, pretrained=True)
else:
raise ValueError("invalid method")
elif args.backbone=="FCNcls":
from model.FCNcls import load_predtrain
weight_url = f'{SAVE_WEIGHT_PATH}/weights/fcn8s_from_caffe.pth'
if args.method in ["baseline", "oracle", "oracle_lovaz", "dCRF"]:
from model.FCNcls import BaseNet
model = BaseNet(args.num_classes)
load_predtrain(model, weight_url)
elif args.method in ["TEL", "UTEL", "UTELT", "BUTELT", "TELT"]:
from model.FCNcls import BaseNet_tree
model = BaseNet_tree(args.num_classes)
load_predtrain(model, weight_url)
elif args.method in ["CRGNet"]:
from model.FCNcls import BaseNet_2dec
model = BaseNet_2dec(args.num_classes)
load_predtrain(model, weight_url)
elif args.method in ["TFCSD"]:
from model.FCNcls import BaseNet_tree_2dec_TFCSD
model = BaseNet_tree_2dec_TFCSD(args.num_classes)
load_predtrain(model, weight_url)
elif args.method in ["FESTA",]:
from model.FCNcls import BaseNet_FESTA
model = BaseNet_FESTA(args.num_classes)
load_predtrain(model, weight_url)
elif args.method in ["AGMM",]:
from model.FCNcls import BaseNet_AGMM
model = BaseNet_AGMM(args.num_classes)
load_predtrain(model, weight_url)
else:
raise ValueError("invalid method")
elif args.backbone=="effiSAMformer":
model_name = 'l0'
weight_url = f'{SAVE_WEIGHT_PATH}/weights/sam/l0.pt'
if args.method in ["baseline", "oracle", "oracle_lovaz"]:
from efficientvit.SAMunetformer import SAM_seg
model = SAM_seg(model_name=model_name, weight_url=weight_url,
imgsz=h, device=args.device, num_classes=args.num_classes)
elif args.method in ["TEL", "UTEL", "UTELT", "BUTELT", "TELT"]:
from efficientvit.SAMunetformer import SAM_seg_tree
model = SAM_seg_tree(model_name=model_name, weight_url=weight_url,
imgsz=h, device=args.device, num_classes=args.num_classes)
elif args.method in ["CRGNet"]:
from efficientvit.SAMunetformer import SAM_seg_2dec
model = SAM_seg_2dec(model_name=model_name, weight_url=weight_url,
imgsz=h, device=args.device, num_classes=args.num_classes)
elif args.method in ["TFCSD"]:
from efficientvit.SAMunetformer import SAM_seg_tree_2dec_TFCSD
model = SAM_seg_tree_2dec_TFCSD(model_name=model_name, weight_url=weight_url,
imgsz=h, device=args.device, num_classes=args.num_classes)
elif args.method in ["FESTA"]:
from efficientvit.SAMunetformer import SAM_seg_FESTA
model = SAM_seg_FESTA(model_name=model_name, weight_url=weight_url,
imgsz=h, device=args.device, num_classes=args.num_classes)
else:
raise ValueError("invalid method")
else:
raise ValueError("invalid backbone")
return model
def get_testloader(args):
w, h = map(int, args.input_size_test.split(','))
#input_size_test = (w, h)
from dataset.vaihingen_dataset_cv2 import VaihingenDataSet
test_loader = data.DataLoader(
VaihingenDataSet(args.data_dir_test, args.test_list, set='test', cache=args.cache),
batch_size=1, shuffle=False, num_workers=args.num_workers, pin_memory=True)
return test_loader
def get_valloader(args):
w, h = map(int, args.input_size_test.split(','))
#input_size_test = (w, h)
from dataset.vaihingen_dataset_cv2 import VaihingenDataSet
test_loader = data.DataLoader(
VaihingenDataSet(args.data_dir_val, args.val_list, set='test', cache=args.cache),
batch_size=1, shuffle=False, num_workers=args.num_workers, pin_memory=True)
return test_loader
def get_train_testloader(args):
w, h = map(int, args.input_size_test.split(','))
#input_size_test = (w, h)
w, h = map(int, args.input_size_train.split(','))
input_size_train = (w, h)
if args.method in ["baseline", "oracle", "oracle_lovaz", "FESTA", "CRGNet", "AGMM"]:
iscls_label = False
if args.method in ["AGMM"]:
iscls_label = True
from dataset.vaihingen_dataset_cv2 import VaihingenDataSet
src_loader = data.DataLoader(
VaihingenDataSet(args.data_dir_train, args.train_list, max_iters=args.num_steps_stop*args.batch_size,
crop_size=input_size_train, set='train', mode=args.mode, id=args.id,
cache=args.cache, iscls_label=iscls_label, num_classes=args.num_classes),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
test_loader = data.DataLoader(
VaihingenDataSet(args.data_dir_val, args.val_list,set='test', cache=args.cache),
batch_size=1, shuffle=False, num_workers=args.num_workers, pin_memory=True)
elif args.method in ["TEL", "UTEL", "TFCSD", "UTELT", "BUTELT", "TELT", "dCRF"]:
unlabeled = True
if args.method in ["dCRF"]:
unlabeled = False
# add cache by cyx, add unlabeled for the tree_energy_loss
from dataset.vaihingen_dataset_cv2 import VaihingenDataSet_RRM
src_loader = data.DataLoader(
VaihingenDataSet_RRM(args.data_dir_train, args.train_list, max_iters=args.num_steps_stop * args.batch_size,
crop_size=input_size_train, set='train', mode=args.mode, id=args.id,
cache=args.cache, unlabeled=unlabeled, iscolor=args.iscolor),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
test_loader = data.DataLoader(
VaihingenDataSet_RRM(args.data_dir_val, args.val_list, set='test', cache=args.cache),
batch_size=1, shuffle=False, num_workers=args.num_workers, pin_memory=True)
else:
raise ValueError("invalid method")
return src_loader, test_loader
def init_seeds(seed=1234):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)