-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpredict_realesanet_feature_globe.py
240 lines (208 loc) · 9.87 KB
/
predict_realesanet_feature_globe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
'''
predit the whole images
'''
import os
import pathlib
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import torch
import random
import numpy as np
from tqdm import tqdm
from torch.utils import data
from tensorboardX import SummaryWriter #change tensorboardX
from BH_loader import myImageFloder_S12_globe
from metrics import AverageMeter, acc2fileRMSE, SegmentationMetric, acc2file, HeightMetric, acc2fileHeight
from SR.rrdbnet_arch import RealESRGAN
from utils.preprocess import array2raster_rio, array2raster
from mymodels import SRRegress_Cls_feature
import shutil
from osgeo import gdal
import argparse
from losses_pytorch.selfloss import CE_DICE_adapt, MSE_adapt, MSE_adapt_weight, CE_DICE_adapt_weight
from BH_loader import gridimgLoader
def get_args(city='globe'):
parser = argparse.ArgumentParser()
parser.add_argument('--datapath', default=r'.\data')
parser.add_argument('--trainlist', default=f'datalist_{city}_train_0.7.csv')
parser.add_argument('--vallist', default=f'datalist_{city}_test_0.7_val_0.3.csv')
parser.add_argument('--testlist', default=f'datalist_{city}_test_0.7_test_0.3.csv')
parser.add_argument('--logdir', default=fr'.\weights\realesrgan_feature_aggre_weight_{city}')
parser.add_argument('--logdirhr', default=r'.\weights\realesrgan\checkpoint.tar')
parser.add_argument('--checkpoint',default='checkpoint.tar')
parser.add_argument('--nchans', default=8)
parser.add_argument('--nchanss2', default=6)
# model train parameter
parser.add_argument('--maxepoch', default=30, type=int)
parser.add_argument('--lr', default=0.001, type=float)
# BMSE: balance MSE
# parser.add_argument('--bmse', type=bool, default=False)
# parser.add_argument('--init_noise_sigma', type=float, default=1.0)
# parser.add_argument('--sigma_lr', type=float, default=0.01)
# parser.add_argument('--fix_noise_sigma', type=bool, default=False)
parser.add_argument('--wmse', type=bool, default=False)
parser.add_argument('--datastats', type=str, default='datastatsglobe')
parser.add_argument('--preweight', type=str, default=f'datastatsglobe/bh_stats_{city}.txt', help='None') # weight
parser.add_argument('--s1dir', type=str, default=f's1{city}_check')
parser.add_argument('--s2dir', type=str, default=f's2{city}_check')
parser.add_argument('--bhdir', type=str, default=f'bh{city}')
parser.add_argument('--normheight', type=float, default=1.0)
parser.add_argument('--smoothl1', type=bool, default=False)
parser.add_argument('--isaggre', type=bool, default=True)
parser.add_argument('--ishir', type=bool, default=True)
parser.add_argument('--hir', type=tuple, default=(0, 3, 12, 21, 30, 60, 90, 256))
parser.add_argument('--chans_build', type=int, default=7) # the channels of building hierarchical classification
# parser.add_argument('--ismodelhir', type=bool, default=False)
# save predicted images
parser.add_argument('--wholeimgpath', type=str, default=r'D:\data\Landcover\s12range')
parser.add_argument('--cityname', type=list, default=['lanzhou', ]) # ningbo, tianjin, lanzhou
# parser.add_argument('--grid', type=int, default=64)
# parser.add_argument('--stride', type=int, default=60) # overlap 4 pixels =40m = 2.5m*16
args = parser.parse_args()
return args
def main_test(args, num_sample=100, suffix='',
iswhole=False, istest=True, is1km=False, ispred=False,
batch_size=1, num_workers=6, issave=False,
respath=None, gridvalid=None):
# Setup seeds
torch.manual_seed(1337)
torch.cuda.manual_seed(1337)
np.random.seed(1337)
random.seed(1337)
# Setup datalist
data_path = args.datapath
testlist_path = os.path.join(data_path, args.testlist)
logdir_hr = args.logdirhr
# Setup parameters
classes = args.chans_build
nchannels = args.nchans
device = 'cuda'
logdir = args.logdir
# super-resolution semantic segmentation
net = SRRegress_Cls_feature(encoder_name="efficientnet-b4",
in_channels=nchannels, super_in=64,
super_mid=16, upscale=4,
chans_build=args.chans_build).to(device)
# Super-resolution image reconstruction
net_hr = RealESRGAN(pretrain_g_path=None,
pretrain_d_path=None,
device=device, scale=4,
num_block=23)
net_hr.net_g.load_state_dict(torch.load(logdir_hr)['net_g_ema'])
net_hr.net_g.eval()
for p in net_hr.net_g.parameters():
p.requires_grad = False
# print the model
resume = os.path.join(logdir, args.checkpoint)
if os.path.isfile(resume):
print("=> loading checkpoint '{}'".format(resume))
checkpoint = torch.load(resume)
net.load_state_dict(checkpoint['state_dict'], strict=False)
# optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(resume, checkpoint['epoch']))
if 'iter' in checkpoint.keys():
start_epoch = checkpoint['iter']
else:
start_epoch = checkpoint['epoch']
else:
print("=> no checkpoint found at resume")
print("=> Will stop.")
return
# scale = 1.0
id = str(start_epoch) # + str(scale)
if iswhole:
if respath is None:
respath = os.path.join(logdir, 'pred_' + id+'_'+suffix)
os.makedirs(respath, exist_ok=True)
for cityname in args.cityname:
if os.path.exists(os.path.join(respath, cityname+'_build.tif')):
continue
print('process: %s'%cityname)
predict_whole_image_grid(args, cityname, net, net_hr.net_g, device,
start_epoch, respath=respath, gridvalid=gridvalid)
# 2023.12.1: only predict values on grids
def predict_whole_image_grid(args, cityname, model, net_hr, device,
epoch, respath=None,gridvalid='isv'):
# load img
dataset = gridimgLoader(rootname=args.wholeimgpath,
cityname=cityname, datastats=args.datastats,
normmethod='minmax', datarange=(0, 1),
s1dir=args.s1dir, s2dir=args.s2dir,
gridvalid=gridvalid, nchans=args.nchanss2)
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=32, shuffle=True, num_workers=8, pin_memory=True)
width = dataset.width * 4
height = dataset.height * 4
src_tif = dataset.s2path
srcgeotrans = dataset.geotrans
nres = srcgeotrans[1]/4.0 #
res_height = np.zeros((height, width), dtype=np.uint16)
res_build = np.zeros((args.chans_build, height, width), dtype=np.uint16)
res_weight = np.zeros((height, width), dtype=np.uint8) # the initial weight is set to 0
# predict
model.eval()
net_hr.eval()
# acc_total = AverageMeter()
num = len(dataloader)
pbar = tqdm(range(num), disable=False)
with torch.no_grad():
for idx, (x, posall) in enumerate(dataloader):
x = x.to(device, non_blocking=True)
hr_fea = net_hr.forward_feature(x[:, :3]) # RGB of sentinel-2 images
ypred, build_pred = model.forward(x, hr_fea) # N C H W
ypred = ypred.cpu().numpy() # N 1 H W
ypred[ypred<0] = 0 # set to postive
ypred = np.round(ypred*10).astype(np.uint16)
build_pred = torch.softmax(build_pred, dim=1).cpu().numpy() # N C H W -> N H W, [0,1]
build_pred = np.round(build_pred*255).astype(np.uint16)
# save
n = x.shape[0]
for i in range(n):
[xoff, yoff, xcount, ycount] = posall[i]*4
res_height[yoff:yoff+ycount, xoff:xoff+xcount] += ypred[i, 0, :ycount, :xcount]
res_build[:, yoff:yoff + ycount, xoff:xoff + xcount] += build_pred[i, :, :ycount, :xcount]
res_weight[yoff:yoff+ycount, xoff:xoff+xcount] += 1
pbar.set_description(
'Test Epoch:{epoch:4}. Iter:{batch:4}|{iter:4}'.format(
epoch=epoch, batch=idx, iter=num))
pbar.update()
pbar.close()
# res_build = res_build/res_weight
# building prediction
res_build = np.argmax(res_build, axis=0).astype(np.uint8) # C H W -> H W
res_tif = os.path.join(respath, cityname + '_build.tif')
array2raster_rio(res_tif, res_build, src_tif, bands=1, nresolution=nres)
res_build = None
# normalized by weight, only on valid region
mask = (res_weight > 0)
# res_weight = 1 # in case of zeros
res_height[mask] = np.round(res_height[mask] / res_weight[mask]).astype(np.uint16)
res_weight = None
# save
res_tif = os.path.join(respath, cityname+'_height.tif')
array2raster(res_tif, res_height, src_tif, datatype=gdal.GDT_UInt16, nresolution=nres,
compressoption=['COMPRESS=DEFLATE', 'TILED=YES'])
res_height = None
def getcitynamelist(args):
suffix = '_s2.tif'
flist = pathlib.Path(args.wholeimgpath).glob('*'+suffix)
flist = [i.stem[:-3] for i in flist]
print(len(flist))
return flist
if __name__=="__main__":
# predict on the whole images
city = 'globe'
args = get_args(city=city)
args.checkpoint = 'checkpoint20.tar'
isonamelist = ['chn_large', 'usa_large', 'europe_large', 'chn_metro', 'usa_metro', 'europe_metro']
for isoname in isonamelist:
args.wholeimgpath = r'.\data\urban\input_data\s2'+isoname
# flist = getcitynamelist(args)
main_test(args, num_sample=0, suffix='city'+isoname,
iswhole=True, batch_size=16, num_workers=8, gridvalid='isv')
# predict Jilin-1
# args.wholeimgpath = r'.\data\jilin\dsm'
# args.cityname = ['Changchun', 'Urumqi', 'mei']
# main_test(args, num_sample=0, suffix='city',
# iswhole=True, batch_size=16, num_workers=8,
# respath = args.wholeimgpath, gridvalid=None)