-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmodel.py
311 lines (253 loc) · 11.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from mdconv import MDConv, GroupConv2D
def round_filters(filters, multiplier=1.0, divisor=8, min_depth=None):
multiplier = multiplier
divisor = divisor
min_depth = min_depth
if not multiplier:
return filters
filters *= multiplier
min_depth = min_depth or divisor
new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
if new_filters < 0.9 * filters:
new_filters += divisor
return new_filters
class Swish(nn.Module):
def __init__(self):
super(Swish, self).__init__()
def forward(self, x):
return x * torch.sigmoid(x)
class SqueezeExcitation(nn.Module):
def __init__(self, in_channels, out_channels, swish):
super(SqueezeExcitation, self).__init__()
self.activation = Swish() if swish else nn.ReLU()
self.se_reduce = nn.Sequential(
GroupConv2D(in_channels, out_channels, bias=True),
nn.BatchNorm2d(out_channels),
self.activation
)
self.se_expand = nn.Sequential(
GroupConv2D(out_channels, in_channels, bias=True),
nn.BatchNorm2d(in_channels),
)
def forward(self, x):
se_tensor = torch.mean(x, dim=[2, 3], keepdim=True)
out = self.se_expand(self.se_reduce(se_tensor))
out = torch.sigmoid(out) * x
return out
class MixBlock(nn.Module):
def __init__(self, in_channels, out_channels, n_chunks, stride, expand_ratio, se_ratio, swish, expand_ksize, project_ksize):
super(MixBlock, self).__init__()
self.expand_ratio = expand_ratio
self.se_ratio = se_ratio
self.stride = stride
self.in_channels = in_channels
self.out_channels = out_channels
self._has_se = (se_ratio is not None) and (se_ratio > 0) and (se_ratio <= 1)
self.activation = Swish() if swish else nn.ReLU()
if expand_ratio != 1:
self.expand_conv = nn.Sequential(
GroupConv2D(in_channels, in_channels * expand_ratio, n_chunks=expand_ksize),
nn.BatchNorm2d(in_channels * expand_ratio),
self.activation
)
self.mdconv = nn.Sequential(
MDConv(in_channels * expand_ratio, n_chunks=n_chunks, stride=stride),
nn.BatchNorm2d(in_channels * expand_ratio),
self.activation
)
if self._has_se:
num_reduced_filters = max(1, int(in_channels * se_ratio))
self.squeeze_excitation = SqueezeExcitation(in_channels * expand_ratio, num_reduced_filters, swish)
self.project_conv = nn.Sequential(
GroupConv2D(in_channels * expand_ratio, out_channels, n_chunks=project_ksize),
nn.BatchNorm2d(out_channels),
)
else:
self.mdconv = nn.Sequential(
MDConv(in_channels, n_chunks=n_chunks, stride=stride),
nn.BatchNorm2d(in_channels),
self.activation
)
if self._has_se:
num_reduced_filters = max(1, int(in_channels * se_ratio))
self.squeeze_excitation = SqueezeExcitation(in_channels, num_reduced_filters, swish)
self.project_conv = nn.Sequential(
GroupConv2D(in_channels, out_channels, n_chunks=project_ksize),
nn.BatchNorm2d(out_channels),
)
def forward(self, x):
if self.expand_ratio != 1:
out = self.expand_conv(x)
out = self.mdconv(out)
if self._has_se:
out = self.squeeze_excitation(out)
out = self.project_conv(out)
else:
out = self.mdconv(x)
if self._has_se:
out = self.squeeze_excitation(out)
out = self.project_conv(out)
if self.stride == 1 and self.in_channels == self.out_channels:
out = out + x
return out
class MixNet(nn.Module):
def __init__(self, stem, head, last_out_channels, block_args, dropout_rate=0.2, num_classes=1000, dataset='IMAGENET'):
super(MixNet, self).__init__()
self.dataset = dataset
if dataset == 'IMAGENET':
self.conv = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=stem, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(stem),
nn.ReLU(),
)
elif dataset == 'CIFAR10' or dataset == 'CIFAR100':
self.conv = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=stem, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(stem),
nn.ReLU(),
)
layers = []
for in_channels, out_channels, n_chunks, stride, expqand_ratio, se_ratio, swish, expand_ksize, project_ksize in block_args:
layers.append(MixBlock(in_channels, out_channels, n_chunks, stride, expqand_ratio, se_ratio, swish, expand_ksize, project_ksize))
self.layers = nn.Sequential(*layers)
self.head_conv = nn.Sequential(
nn.Conv2d(last_out_channels, head, kernel_size=1),
nn.BatchNorm2d(head),
nn.ReLU(),
)
self.fc = nn.Sequential(
nn.Dropout(dropout_rate),
nn.Linear(head, num_classes),
)
self._initialize_weights()
def forward(self, x):
out = self.conv(x)
out = self.layers(out)
out = self.head_conv(out)
if self.dataset == 'IMAGENET':
out = F.avg_pool2d(out, 7)
elif self.dataset == 'CIFAR10' or self.dataset == 'CIFAR100':
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / fan_out))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
def get_model_parameters(model):
total_parameters = 0
for layer in list(model.parameters()):
layer_parameter = 1
for l in list(layer.size()):
layer_parameter *= l
total_parameters += layer_parameter
return total_parameters
def mixnet_s(num_classes=1000, multiplier=1.0, divisor=8, min_depth=None, dataset='IMAGENET'):
if dataset == 'IMAGENET':
small = [
[16, 16, 1, 1, 1, None, False, 1, 1],
[16, 24, 1, 2, 6, None, False, 2, 2],
[24, 24, 1, 1, 3, None, False, 2, 2],
[24, 40, 3, 2, 6, 0.5, True, 1, 1],
[40, 40, 2, 1, 6, 0.5, True, 2, 2],
[40, 40, 2, 1, 6, 0.5, True, 2, 2],
[40, 40, 2, 1, 6, 0.5, True, 2, 2],
[40, 80, 3, 2, 6, 0.25, True, 1, 2],
[80, 80, 2, 1, 6, 0.25, True, 1, 2],
[80, 80, 2, 1, 6, 0.25, True, 1, 2],
[80, 120, 3, 1, 6, 0.5, True, 2, 2],
[120, 120, 4, 1, 3, 0.5, True, 2, 2],
[120, 120, 4, 2, 3, 0.5, True, 2, 2],
[120, 200, 5, 1, 6, 0.5, True, 1, 1],
[200, 200, 4, 1, 6, 0.5, True, 1, 2],
[200, 200, 4, 1, 6, 0.5, True, 1, 2]
]
elif dataset == 'CIFAR10' or dataset == 'CIFAR100':
small = [
[16, 16, 1, 1, 1, None, False, 1, 1],
[16, 24, 1, 1, 6, None, False, 2, 2],
[24, 24, 1, 1, 3, None, False, 2, 2],
[24, 40, 3, 2, 6, 0.5, True, 1, 1],
[40, 40, 2, 1, 6, 0.5, True, 2, 2],
[40, 40, 2, 1, 6, 0.5, True, 2, 2],
[40, 40, 2, 1, 6, 0.5, True, 2, 2],
[40, 80, 3, 2, 6, 0.25, True, 1, 2],
[80, 80, 2, 1, 6, 0.25, True, 1, 2],
[80, 80, 2, 1, 6, 0.25, True, 1, 2],
[80, 120, 3, 1, 6, 0.5, True, 2, 2],
[120, 120, 4, 1, 3, 0.5, True, 2, 2],
[120, 120, 4, 2, 3, 0.5, True, 2, 2],
[120, 200, 5, 1, 6, 0.5, True, 1, 1],
[200, 200, 4, 1, 6, 0.5, True, 1, 2],
[200, 200, 4, 1, 6, 0.5, True, 1, 2]
]
stem = round_filters(16, multiplier)
last_out_channels = round_filters(200, multiplier)
head = round_filters(1536, multiplier)
return MixNet(stem=stem, head=head, last_out_channels=last_out_channels, block_args=small, num_classes=num_classes, dataset=dataset)
def mixnet_m(num_classes=1000, multiplier=1.0, divisor=8, min_depth=None, dataset='IMAGENET'):
if dataset == 'IMAGENET':
medium = [
[24, 24, 1, 1, 1, None, False, 1, 1],
[24, 32, 3, 2, 6, None, False, 2, 2],
[32, 32, 1, 1, 3, None, False, 2, 2],
[32, 40, 4, 2, 6, 0.5, True, 1, 1],
[40, 40, 2, 1, 6, 0.5, True, 2, 2],
[40, 40, 2, 1, 6, 0.5, True, 2, 2],
[40, 40, 2, 1, 6, 0.5, True, 2, 2],
[40, 80, 3, 2, 6, 0.25, True, 1, 1],
[80, 80, 4, 1, 6, 0.25, True, 2, 2],
[80, 80, 4, 1, 6, 0.25, True, 2, 2],
[80, 80, 4, 1, 6, 0.25, True, 2, 2],
[80, 120, 1, 1, 6, 0.5, True, 1, 1],
[120, 120, 4, 1, 3, 0.5, True, 2, 2],
[120, 120, 4, 1, 3, 0.5, True, 2, 2],
[120, 120, 4, 1, 3, 0.5, True, 2, 2],
[120, 200, 4, 2, 6, 0.5, True, 1, 1],
[200, 200, 4, 1, 6, 0.5, True, 1, 2],
[200, 200, 4, 1, 6, 0.5, True, 1, 2],
[200, 200, 4, 1, 6, 0.5, True, 1, 2]
]
elif dataset == 'CIFAR10' or dataset == 'CIFAR100':
medium = [
[24, 24, 1, 1, 1, None, False, 1, 1],
[24, 32, 3, 1, 6, None, False, 2, 2],
[32, 32, 1, 1, 3, None, False, 2, 2],
[32, 40, 4, 2, 6, 0.5, True, 1, 1],
[40, 40, 2, 1, 6, 0.5, True, 2, 2],
[40, 40, 2, 1, 6, 0.5, True, 2, 2],
[40, 40, 2, 1, 6, 0.5, True, 2, 2],
[40, 80, 3, 2, 6, 0.25, True, 1, 1],
[80, 80, 4, 1, 6, 0.25, True, 2, 2],
[80, 80, 4, 1, 6, 0.25, True, 2, 2],
[80, 80, 4, 1, 6, 0.25, True, 2, 2],
[80, 120, 1, 1, 6, 0.5, True, 1, 1],
[120, 120, 4, 1, 3, 0.5, True, 2, 2],
[120, 120, 4, 1, 3, 0.5, True, 2, 2],
[120, 120, 4, 1, 3, 0.5, True, 2, 2],
[120, 200, 4, 2, 6, 0.5, True, 1, 1],
[200, 200, 4, 1, 6, 0.5, True, 1, 2],
[200, 200, 4, 1, 6, 0.5, True, 1, 2],
[200, 200, 4, 1, 6, 0.5, True, 1, 2]
]
for line in medium:
line[0] = round_filters(line[0], multiplier)
line[1] = round_filters(line[1], multiplier)
stem = round_filters(24, multiplier)
last_out_channels = round_filters(200, multiplier)
head = round_filters(1536, multiplier=1.0)
return MixNet(stem=stem, head=head, last_out_channels=last_out_channels, block_args=medium, dropout_rate=0.25, num_classes=num_classes, dataset=dataset)
def mixnet_l(num_classes=1000, dataset='IMAGENET'):
return mixnet_m(num_classes=num_classes, multiplier=1.3, dataset=dataset)