Skip to content

Latest commit

 

History

History
284 lines (149 loc) · 6.87 KB

README.md

File metadata and controls

284 lines (149 loc) · 6.87 KB

TF and epi regulators

hs.TFs <- read.csv("https://github.com/leezx/RToolbox/raw/master/data/Homo_sapiens_TF.txt", sep = "\t")
hs.coTFs <- read.csv("https://github.com/leezx/RToolbox/raw/master/data/Homo_sapiens_TF_cofactors.txt", sep = "\t")
hs.TFs <- unique(c(hs.TFs$Symbol, hs.TFs$Symbol))
length(hs.TFs)

hs.epi.reg <- read.csv("https://github.com/leezx/RToolbox/raw/master/data/KAT6A-chromatin-regulators.csv", sep = ",")
hs.epi.reg <- unique(hs.epi.reg$Gene)
hs.epi.reg <- hs.epi.reg[!grepl("NonTargetingControlGuide",hs.epi.reg)]
length(hs.epi.reg)

gplots::venn(list(hs.TFs=hs.TFs, hs.epi.reg=hs.epi.reg))
  • source("https://github.com/leezx/Toolsets/raw/master/R/Toolsets.R")
  • source("https://github.com/leezx/Toolsets/raw/master/R/Plot.R")

creat a function

  • copy the template in tmpf.R
  • develop the new function in local env
  • add the new function to tmpf.R
  • gitdoc
  • gitpush

gitdoc

  • Rscript -e "devtools::document()" && cd .. && R CMD Rd2pdf Toolsets && mv Toolsets.pdf Toolsets && cd Toolsets
  • go to Rstudio and build
  • or Rscript -e "devtools::document();devtools::check();devtools::build()"

beauty

  • make function name shorter (. is better than _)
  • make the description shorter
  • word wrap for the example code

summary the functions

  • move the newly functions to formal R file
  • update the function name and description
  • update the manual
  • DO NOT change the API unless you are now develop it

prepare

example package

singleCellTools

怎么才能随时使用、学习和调试别人的代码,在充分理解之后,修改保存为自己的代码?(如果这项技能点满了,那在生信领域将大有可为!!!)

使用和调试分开,所有代码都是想通的,核心的导向是数据;不要害怕不同工具之间的隔阂,很有可能一个函数就可以连通。

strategy

all in one file

name system:

  • prepare_
  • clustering_
  • trajectory_
  • deg_
  • toC_
  • plot_
  • tp_

objective:

  • clear function
  • clear input and output
  • well documented
  • good handbook

others:

  • collect R packages
  • collect useful graphs
  • 无需安装,随时能够调用
  • 随时生成PDF的handbook,方便查询
  • 版本管理
  • 动态修改
  • 在实用性和完备性之间获得平衡,不要封装得太好,不要追求完善,最好是一个简单的功能封装成一个函数, 只有当最终封装成包时才追求完整性
  • 画图 - 功能和款式

Learning material

R packages

Coursera - Building R Packages

From course:

Building packages for Bioconductor

The S4 object system

Learn from monocle, seurat, etc.

手把手教你如何进行 代码版本控制

以规范的R包标准来写这个包

  • 将单细胞的分析按功能分类(smart-seq and 10x,clustering,pseudotime,绘图模块);
  • 标准化输入输出;
  • 写好使用文档;

R的语法技巧

  1. subset(diff_test_res, qval < 0.01),之前取子集的方法太笨拙了;

Q&A

  1. Q: 如何将别人的R包函数直接添加到我自己的包里?

A: 如果是纯函数,那直接copy即可;但是现在的大多数对象集成的,直接copy是不能使用的,要提前把class给导入。今天我就遇到了一个问题,直接将R文件夹里的函数文件copy,无法build,显示某个class没有define,搜索了好久没有解决,最终发现是Description文件的问题(原包可以正常编译,一个一个文件的删除,测试出来的),里面有个Depends,它不是写得好玩的,它决定了你编译前会import哪些包(随便移除一个就测试出来了)。NAMESPACE不需要手动编辑,roxygen会自动生成。

  1. Q: R中开发同一个包时,如何多版本共存,一起调试?

A: 同名的函数会覆盖,所以只能显式的使用域名。

  1. Q: 已经有很多降维的方法了,还需要特征选择吗?

A: 不知道

script

prepare_TPM_value_from_smart_seq_data

prepare_raw_count_matrix_from_10x_data

filtering_matrix

normalizing_matrix

batch_effect_correction

feature_selection

Highly_variable_genes_selection

dimension_reduction_by_PCA

dimension_reduction_by_diffusionMap

data_transform_matrix_to_CellDataSet

data_transform_matrix_to_SingleCellExperiment

data_transform_matrix_to_seurat

data_transform_CellDataSet_to_SingleCellExperiment

data_transform_SingleCellExperiment_to_CellDataSet

data_transform_mouse_ensemble_to_symbol

clustering_by_SC3

clustering_by_SIMLR

clustering_by_seurat

clustering_by_monocle

marker_identification_by_seurat

marker_identification_by_SC3

pseudotime_based_on_clustering

pseudotime_by_monocle1

pseudotime_by_monocle2

pseudotime_by_SLICER

module_detection_by_WGCNA

module_detection_by_MSIC

DEG_pseudotime

DEG_by_scde

DEG_by_edgeR

scoring_model_by_LR

dataset_human_TFs

dataset_mouse_TFs

dataset_human_Y_chromsome_genes

dataset_mouse_Y_chromsome_genes

dataset_human_to_mouse_genes

dataset_cell_cycle_genes

dataset_cell_cycle_phase_genes

dataset_migration_genes

dataset_ENS_markers

show_notes

tools_study_test

plotting_modules_smooth_curve_across_pseudotime

plotting_violin_plot_of_markers_across_clusters_by_seurat

plotting_boxplot

plotting_violin_plot

plotting_barplot

plotting_volcano_plot

plotting_heatmap

plots_collection_001: dot plot, The SplitDotPlotGG function can be useful for viewing conserved cell type markers across conditions, showing both the expression level and the percentage of cells in a cluster expressing any given gene. Here we plot 2-3 strong marker genes for each of our 13 clusters. See link

plots_collection_002: scatter plots, highlighting genes that exhibit dramatic responses to interferon stimulation. See link

plots_collection_00X

(Source code from CNS paper)

Algorithms_collection_001

Algorithms_collection_00X