-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
298 lines (264 loc) · 9.37 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import numpy as np
import jax
import math
from utils.models import get_model_ready
from utils.helpers import load_pkl_object
from terra.env import TerraEnvBatch
from terra.actions import (
WheeledAction,
TrackedAction,
WheeledActionType,
TrackedActionType,
)
import jax.numpy as jnp
from utils.utils_ppo import obs_to_model_input, wrap_action
# from utils.curriculum import Curriculum
from tensorflow_probability.substrates import jax as tfp
from train import TrainConfig # needed for unpickling checkpoints
def load_neural_network(config, env):
rng = jax.random.PRNGKey(0)
model, _ = get_model_ready(rng, config, env)
return model
def _append_to_obs(o, obs_log):
if obs_log == {}:
return {k: v[:, None] for k, v in o.items()}
obs_log = {
k: jnp.concatenate((v, o[k][:, None]), axis=1) for k, v in obs_log.items()
}
return obs_log
def rollout_episode(
env: TerraEnvBatch,
model,
model_params,
env_cfgs,
rl_config,
max_frames,
deterministic,
seed,
):
"""
NOTE: this function assumes it's a tracked agent in the way it computes the stats.
"""
print(f"Using {seed=}")
rng = jax.random.PRNGKey(seed)
rng, _rng = jax.random.split(rng)
rng_reset = jax.random.split(_rng, rl_config.num_test_rollouts)
timestep = env.reset(env_cfgs, rng_reset)
tile_size = env_cfgs.tile_size[0].item()
move_tiles = env_cfgs.agent.move_tiles[0].item()
action_type = env.batch_cfg.action_type
if action_type == TrackedAction:
move_actions = (TrackedActionType.FORWARD, TrackedActionType.BACKWARD)
l_actions = ()
do_action = TrackedActionType.DO
elif action_type == WheeledAction:
move_actions = (WheeledActionType.FORWARD, WheeledActionType.BACKWARD)
l_actions = (
WheeledActionType.CLOCK_FORWARD,
WheeledActionType.CLOCK_BACKWARD,
WheeledActionType.ANTICLOCK_FORWARD,
WheeledActionType.ANTICLOCK_BACKWARD,
)
do_action = WheeledActionType.DO
else:
raise (ValueError(f"{action_type=}"))
obs = timestep.observation
areas = (obs["target_map"] == -1).sum(
tuple([i for i in range(len(obs["target_map"].shape))][1:])
) * (tile_size**2)
target_maps_init = obs["target_map"].copy()
dig_tiles_per_target_map_init = (target_maps_init == -1).sum(
tuple([i for i in range(len(target_maps_init.shape))][1:])
)
t_counter = 0
reward_seq = []
episode_done_once = None
episode_length = None
move_cumsum = None
do_cumsum = None
obs_seq = {}
while True:
obs_seq = _append_to_obs(obs, obs_seq)
rng, rng_act, rng_step = jax.random.split(rng, 3)
if model is not None:
obs_model = obs_to_model_input(timestep.observation, rl_config)
v, logits_pi = model.apply(model_params, obs_model)
if deterministic:
action = np.argmax(logits_pi, axis=-1)
else:
pi = tfp.distributions.Categorical(logits=logits_pi)
action = pi.sample(seed=rng_act)
else:
raise RuntimeError("Model is None!")
rng_step = jax.random.split(rng_step, rl_config.num_test_rollouts)
timestep = env.step(
timestep, wrap_action(action, env.batch_cfg.action_type), rng_step
)
reward = timestep.reward
next_obs = timestep.observation
done = timestep.done
reward_seq.append(reward)
print(t_counter)
print(10 * "=")
t_counter += 1
if jnp.all(done).item() or t_counter == max_frames:
break
obs = next_obs
# Log stats
if episode_done_once is None:
episode_done_once = done
if episode_length is None:
episode_length = jnp.zeros_like(done, dtype=jnp.int32)
if move_cumsum is None:
move_cumsum = jnp.zeros_like(done, dtype=jnp.int32)
if do_cumsum is None:
do_cumsum = jnp.zeros_like(done, dtype=jnp.int32)
episode_done_once = episode_done_once | done
episode_length += ~episode_done_once
move_cumsum_tmp = jnp.zeros_like(done, dtype=jnp.int32)
for move_action in move_actions:
move_mask = (action == move_action) * (~episode_done_once)
move_cumsum_tmp += move_tiles * tile_size * move_mask.astype(jnp.int32)
for l_action in l_actions:
l_mask = (action == l_action) * (~episode_done_once)
move_cumsum_tmp += 2 * move_tiles * tile_size * l_mask.astype(jnp.int32)
move_cumsum += move_cumsum_tmp
do_cumsum += (action == do_action) * (~episode_done_once)
# Path efficiency -- only include finished envs
move_cumsum *= episode_done_once
path_efficiency = (move_cumsum / jnp.sqrt(areas))[episode_done_once]
path_efficiency_std = path_efficiency.std()
path_efficiency_mean = path_efficiency.mean()
# Workspaces efficiency -- only include finished envs
reference_workspace_area = 0.5 * np.pi * (8**2)
n_dig_actions = do_cumsum // 2
workspaces_efficiency = (
reference_workspace_area
* ((n_dig_actions * episode_done_once) / areas)[episode_done_once]
)
workspaces_efficiency_mean = workspaces_efficiency.mean()
workspaces_efficiency_std = workspaces_efficiency.std()
# Coverage scores
dug_tiles_per_action_map = (obs["action_map"] == -1).sum(
tuple([i for i in range(len(obs["action_map"].shape))][1:])
)
coverage_ratios = dug_tiles_per_action_map / dig_tiles_per_target_map_init
coverage_scores = episode_done_once + (~episode_done_once) * coverage_ratios
coverage_score_mean = coverage_scores.mean()
coverage_score_std = coverage_scores.std()
stats = {
"episode_done_once": episode_done_once,
"episode_length": episode_length,
"path_efficiency": {
"mean": path_efficiency_mean,
"std": path_efficiency_std,
},
"workspaces_efficiency": {
"mean": workspaces_efficiency_mean,
"std": workspaces_efficiency_std,
},
"coverage": {
"mean": coverage_score_mean,
"std": coverage_score_std,
},
}
return np.cumsum(reward_seq), stats, obs_seq
def print_stats(
stats,
):
episode_done_once = stats["episode_done_once"]
episode_length = stats["episode_length"]
path_efficiency = stats["path_efficiency"]
workspaces_efficiency = stats["workspaces_efficiency"]
coverage = stats["coverage"]
completion_rate = 100 * episode_done_once.sum() / len(episode_done_once)
print("\nStats:\n")
print(f"Completion: {completion_rate:.2f}%")
# print(f"First episode length average: {episode_length.mean()}")
# print(f"First episode length min: {episode_length.min()}")
# print(f"First episode length max: {episode_length.max()}")
print(
f"Path efficiency: {path_efficiency['mean']:.2f} ({path_efficiency['std']:.2f})"
)
print(
f"Workspaces efficiency: {workspaces_efficiency['mean']:.2f} ({workspaces_efficiency['std']:.2f})"
)
print(f"Coverage: {coverage['mean']:.2f} ({coverage['std']:.2f})")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"-run",
"--run_name",
type=str,
default="ppo_2023_05_09_10_01_23",
help="es/ppo trained agent.",
)
parser.add_argument(
"-env",
"--env_name",
type=str,
default="Terra",
help="Environment name.",
)
parser.add_argument(
"-n",
"--n_envs",
type=int,
default=1,
help="Number of environments.",
)
parser.add_argument(
"-steps",
"--n_steps",
type=int,
default=10,
help="Number of steps.",
)
parser.add_argument(
"-d",
"--deterministic",
type=int,
default=0,
help="Deterministic. 0 for stochastic, 1 for deterministic.",
)
parser.add_argument(
"-s",
"--seed",
type=int,
default=0,
help="Random seed for the environment.",
)
args, _ = parser.parse_known_args()
n_envs = args.n_envs
log = load_pkl_object(f"{args.run_name}")
config = log["train_config"]
# from utils.helpers import load_config
# config = load_config("agents/Terra/ppo.yaml", 22333, 33222, 5e-04, True, "")["train_config"]
config.num_test_rollouts = n_envs
config.num_devices = 1
# curriculum = Curriculum(rl_config=config, n_devices=n_devices)
# env_cfgs, dofs_count_dict = curriculum.get_cfgs_eval()
env_cfgs = log["env_config"]
env_cfgs = jax.tree_map(
lambda x: x[0][None, ...].repeat(n_envs, 0), env_cfgs
) # take first config and replicate
shuffle_maps = True
env = TerraEnvBatch(rendering=False, shuffle_maps=shuffle_maps)
config.num_embeddings_agent_min = 60
model = load_neural_network(config, env)
model_params = log["model"]
# model_params = jax.tree_map(lambda x: x[0], replicated_params)
deterministic = bool(args.deterministic)
print(f"\nDeterministic = {deterministic}\n")
cum_rewards, stats, _ = rollout_episode(
env,
model,
model_params,
env_cfgs,
config,
max_frames=args.n_steps,
deterministic=deterministic,
seed=args.seed,
)
print_stats(stats)