-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
200 lines (170 loc) · 5.39 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from cleanfid import fid
from pathlib import Path
from cleanfid import fid
import torch
from torch.utils.data import Dataset
from torchvision import transforms as T
import lpips
from glob import glob
import os
from PIL import Image
from torch.utils.data import DataLoader
from tqdm import tqdm
IMG_FORMATS = (
"bmp",
"dng",
"jpeg",
"jpg",
"mpo",
"png",
"tif",
"tiff",
"webp",
"pfm",
) # include image suffixes
class PairDataset(Dataset):
def __init__(self, dataset1, dataset2) -> None:
self.dataset1 = Path(dataset1)
self.dataset1 = glob(str(Path(self.dataset1) / "**" / "*.*"), recursive=True)
self.dataset1 = sorted(
x.replace("/", os.sep)
for x in self.dataset1
if x.split(".")[-1].lower() in IMG_FORMATS
)
self.dataset2 = Path(dataset2)
self.dataset2 = glob(str(Path(self.dataset2) / "**" / "*.*"), recursive=True)
self.dataset2 = sorted(
x.replace("/", os.sep)
for x in self.dataset2
if x.split(".")[-1].lower() in IMG_FORMATS
)
self.len1 = len(self.dataset1)
self.len2 = len(self.dataset2)
assert self.len1 == self.len2, "unpaired datasets"
self.transform = T.Compose([T.Resize((256, 256)), T.ToTensor()])
def __len__(self):
return self.len1
def __getitem__(self, index):
img1_path = self.dataset1[index]
img2_path = self.dataset2[index]
img1 = Image.open(img1_path)
img2 = Image.open(img2_path)
img1 = img1.convert("L")
img2 = img2.convert("L")
img1 = self.transform(img1)
img2 = self.transform(img2)
return img1, img2
def psnr(img1, img2):
mse = torch.mean((img1 - img2) ** 2)
if mse == 0:
return 100
PIXEL_MAX = 1.0
return 20 * torch.log10(PIXEL_MAX / torch.sqrt(mse))
def get_lpips_ssim_metrics(dataset1, dataset2, log_file, batch_size=64):
dataset = PairDataset(dataset1, dataset2)
dataloader = DataLoader(
dataset=dataset, batch_size=batch_size, shuffle=False, num_workers=batch_size
)
lpips_metric = lpips.LPIPS(net="alex")
ddim_metric = lpips.DSSIM(colorspace="RGB")
total_num = len(dataset)
init_lpips = 0
init_ssim = 0
init_psnr = 0
with torch.no_grad():
for i, (img1, img2) in tqdm(
enumerate(dataloader),
desc="LPIPS",
initial=0,
total=int(total_num / batch_size),
):
img1, img2 = img1.cuda(), img2.cuda()
lpips_metric = lpips_metric.cuda()
d_lpips = lpips_metric.forward(img1, img2)
init_lpips = init_lpips + d_lpips.sum()
final_lpips = init_lpips / (total_num + 1e-8)
with open(log_file, "a") as f:
f.write("lpips:{0}".format(final_lpips))
dataloader2 = DataLoader(
dataset=dataset, batch_size=1, shuffle=False, num_workers=1
)
with torch.no_grad():
for i, (img1, img2) in tqdm(
enumerate(dataloader2), desc="SSIM+PSNR", initial=0, total=total_num
):
img1, img2 = img1.cuda(), img2.cuda()
ddim_metric = ddim_metric.cuda()
d_ssim = ddim_metric.forward(img1, img2)
init_ssim = init_ssim + d_ssim
d_psnr = psnr(img1, img2)
init_psnr = init_psnr + d_psnr
final_dssim = init_ssim / (total_num + 1e-8)
final_psnr = init_psnr / (total_num + 1e-8)
with open(log_file, "a") as f:
f.write(
"dssim:{0},ssim:{1},psnr:{2}\n".format(
final_dssim, 1.0 - 2.0 * (final_dssim), final_psnr
)
)
def write_log(
dataset1,
dataset2,
log_file,
fid_score_pytorch_v3,
fid_score_clean_v3,
fid_score_clean_clip,
kid_score_pytorch_v3,
):
with open(log_file, "a") as f:
f.write("first_dataset:{0},second_daatset:{1}\n".format(dataset1, dataset2))
f.write(
"fid_score_pytorch_v3:{0},fid_score_clean_v3:{1},fid_score_clean_clip:{2},kid_score_pytorch_v3:{3}\n".format(
fid_score_pytorch_v3,
fid_score_clean_v3,
fid_score_clean_clip,
kid_score_pytorch_v3,
)
)
def get_all_fid(dataset1, dataset2, log_file):
fid_score_clean_v3 = fid.compute_fid(
dataset1,
dataset2,
mode="clean",
model_name="inception_v3",
num_workers=64,
batch_size=64,
)
fid_score_pytorch_v3 = fid.compute_fid(
dataset1,
dataset2,
mode="legacy_pytorch",
model_name="inception_v3",
num_workers=64,
batch_size=64,
)
fid_score_clean_clip = fid.compute_fid(
dataset1,
dataset2,
mode="clean",
model_name="clip_vit_b_32",
num_workers=64,
batch_size=64,
)
kid_score_pytorch_v3 = fid.compute_kid(
dataset1, dataset2, mode="clean", num_workers=64, batch_size=64
)
write_log(
dataset1,
dataset2,
log_file,
fid_score_pytorch_v3,
fid_score_clean_v3,
fid_score_clean_clip,
kid_score_pytorch_v3,
)
if __name__ == "__main__":
log_file = "metric_fid.txt"
real_path = "data/LLVIP/infrared/test"
generated_path = "data/LLVIP/infrared/test"
get_all_fid(real_path, generated_path, log_file)
get_lpips_ssim_metrics(real_path, generated_path, log_file)