-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
executable file
·139 lines (118 loc) · 4.77 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import time
import cv2
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import numpy as np
import torch
from matplotlib.ticker import NullLocator
from torchvision import transforms
from dataset.VOC_dataset import VOCDataset
from model.fcos import FCOSDetector
def preprocess_img(image, input_ksize):
"""
resize image and bboxes
:param image:
:param input_ksize:
:return:
"""
min_side, max_side = input_ksize
h, w, _ = image.shape
smallest_side = min(w, h)
largest_side = max(w, h)
scale = min_side / smallest_side
if largest_side * scale > max_side:
scale = max_side / largest_side
nw, nh = int(scale * w), int(scale * h)
image_resized = cv2.resize(image, (nw, nh))
pad_w = 32 - nw % 32
pad_h = 32 - nh % 32
image_paded = np.zeros(shape=[nh + pad_h, nw + pad_w, 3], dtype=np.uint8)
image_paded[:nh, :nw, :] = image_resized
return image_paded
# def convertSyncBNtoBN(module):
# module_output = module
# if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
# module_output = torch.nn.BatchNorm2d(module.num_features,
# module.eps, module.momentum,
# module.affine,
# module.track_running_stats)
# if module.affine:
# module_output.weight.data = module.weight.data.clone().detach()
# module_output.bias.data = module.bias.data.clone().detach()
# module_output.running_mean = module.running_mean
# module_output.running_var = module.running_var
# for name, child in module.named_children():
# module_output.add_module(name, convertSyncBNtoBN(child))
# del module
# return module_output
if __name__ == "__main__":
cmap = plt.get_cmap('tab20b')
colors = [cmap(i) for i in np.linspace(0, 1, 20)]
class Config:
# backbone
pretrained = False
freeze_stage_1 = True
freeze_bn = True
# fpn
fpn_out_channels = 256
use_p5 = True
# head
class_num = 80
use_GN_head = True
prior = 0.01
add_centerness = True
cnt_on_reg = False
# training
strides = [8, 16, 32, 64, 128]
limit_range = [[-1, 64], [64, 128], [128, 256], [256, 512], [512, 999999]]
# inference
score_threshold = 0.3
nms_iou_threshold = 0.4
max_detection_boxes_num = 300
# init model
model = FCOSDetector(mode="inference", config=Config)
model = torch.nn.DataParallel(model)
model.load_state_dict(torch.load("./checkpoint/fcos_pretrained_model.pth", map_location=torch.device('cpu')))
model = model.eval()
print("===>success loading model")
root = "./test_images/"
names = os.listdir(root)
for name in names:
img_bgr = cv2.imread(root + name)
img_pad = preprocess_img(img_bgr, [800, 1333])
img = cv2.cvtColor(img_pad.copy(), cv2.COLOR_BGR2RGB)
img1 = transforms.ToTensor()(img)
img1 = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], inplace=True)(img1)
img1 = img1
start_t = time.time()
with torch.no_grad():
out = model(img1.unsqueeze_(dim=0))
end_t = time.time()
cost_t = 1000 * (end_t - start_t)
print("===>success processing img, cost time %.2f ms" % cost_t)
# print(out)
scores, classes, boxes = out
# visualization
boxes = boxes[0].cpu().numpy().tolist()
classes = classes[0].cpu().numpy().tolist()
scores = scores[0].cpu().numpy().tolist()
plt.figure()
fig, ax = plt.subplots(1)
ax.imshow(img)
for i, box in enumerate(boxes):
pt1 = (int(box[0]), int(box[1]))
pt2 = (int(box[2]), int(box[3]))
img_pad = cv2.rectangle(img_pad, pt1, pt2, (0, 255, 0))
b_color = colors[int(classes[i]) - 1]
bbox = patches.Rectangle((box[0], box[1]), width=box[2] - box[0], height=box[3] - box[1], linewidth=1,
facecolor='none', edgecolor=b_color)
ax.add_patch(bbox)
plt.text(box[0], box[1], s="%s %.3f" % (VOCDataset.CLASSES_NAME[int(classes[i])], scores[i]), color='white',
verticalalignment='top',
bbox={'color': b_color, 'pad': 0})
plt.axis('off')
plt.gca().xaxis.set_major_locator(NullLocator())
plt.gca().yaxis.set_major_locator(NullLocator())
plt.savefig('out_images/{}'.format(name), bbox_inches='tight', pad_inches=0.0)
plt.close()