We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hello, I want to use my own dataset for training, but I found that the values of both decode.loss_seg and mix.decode.loss_seg drop to 0 very quickly during training, I'm not sure if the problem is with the parameters or the dataset, could you please help me to look at it, part of the training process is as follows 2023-10-26 08:41:59,207 - mmseg - INFO - workflow: [('train', 1)], max: 40000 iters 2023-10-26 08:42:44,761 - mmseg - INFO - Iter [50/40000] lr: 1.958e-06, eta: 10:04:54, time: 0.908, data_time: 0.011, memory: 9743, decode.loss_seg: 0.6010, decode.acc_seg: 13.7835, src.loss_imnet_feat_dist: 0.0329, mix.decode.loss_seg: 0.3329, mix.decode.acc_seg: 35.2100 2023-10-26 08:43:30,109 - mmseg - INFO - Iter [100/40000] lr: 3.950e-06, eta: 10:03:37, time: 0.907, data_time: 0.010, memory: 9743, decode.loss_seg: 0.5742, decode.acc_seg: 41.1594, src.loss_imnet_feat_dist: 0.0358, mix.decode.loss_seg: 0.3116, mix.decode.acc_seg: 55.3378 2023-10-26 08:44:15,362 - mmseg - INFO - Iter [150/40000] lr: 5.938e-06, eta: 10:02:17, time: 0.905, data_time: 0.010, memory: 9743, decode.loss_seg: 0.3623, decode.acc_seg: 40.3447, src.loss_imnet_feat_dist: 0.0399, mix.decode.loss_seg: 0.1926, mix.decode.acc_seg: 51.9543 2023-10-26 08:45:01,109 - mmseg - INFO - Iter [200/40000] lr: 7.920e-06, eta: 10:02:52, time: 0.915, data_time: 0.010, memory: 9743, decode.loss_seg: 0.3590, decode.acc_seg: 53.8857, src.loss_imnet_feat_dist: 0.0398, mix.decode.loss_seg: 0.1525, mix.decode.acc_seg: 66.6974 2023-10-26 08:45:47,103 - mmseg - INFO - Iter [250/40000] lr: 9.898e-06, eta: 10:03:34, time: 0.920, data_time: 0.010, memory: 9743, decode.loss_seg: 0.2208, decode.acc_seg: 56.3512, src.loss_imnet_feat_dist: 0.0395, mix.decode.loss_seg: 0.0804, mix.decode.acc_seg: 68.9543 2023-10-26 08:46:33,793 - mmseg - INFO - Iter [300/40000] lr: 1.187e-05, eta: 10:05:19, time: 0.934, data_time: 0.011, memory: 9743, decode.loss_seg: 0.1678, decode.acc_seg: 59.7599, src.loss_imnet_feat_dist: 0.0380, mix.decode.loss_seg: 0.0767, mix.decode.acc_seg: 73.5273 2023-10-26 08:47:20,687 - mmseg - INFO - Iter [350/40000] lr: 1.384e-05, eta: 10:06:44, time: 0.938, data_time: 0.011, memory: 9743, decode.loss_seg: 0.1187, decode.acc_seg: 63.4222, src.loss_imnet_feat_dist: 0.0379, mix.decode.loss_seg: 0.0478, mix.decode.acc_seg: 83.0094 2023-10-26 08:48:07,717 - mmseg - INFO - Iter [400/40000] lr: 1.580e-05, eta: 10:07:49, time: 0.941, data_time: 0.011, memory: 9743, decode.loss_seg: 0.0693, decode.acc_seg: 59.1260, src.loss_imnet_feat_dist: 0.0387, mix.decode.loss_seg: 0.0233, mix.decode.acc_seg: 85.0879 2023-10-26 08:48:54,974 - mmseg - INFO - Iter [450/40000] lr: 1.776e-05, eta: 10:08:49, time: 0.945, data_time: 0.011, memory: 9743, decode.loss_seg: 0.0573, decode.acc_seg: 62.6751, src.loss_imnet_feat_dist: 0.0399, mix.decode.loss_seg: 0.0157, mix.decode.acc_seg: 78.6375 2023-10-26 08:49:42,184 - mmseg - INFO - Iter [500/40000] lr: 1.971e-05, eta: 10:09:24, time: 0.944, data_time: 0.011, memory: 9743, decode.loss_seg: 0.0384, decode.acc_seg: 63.9637, src.loss_imnet_feat_dist: 0.0381, mix.decode.loss_seg: 0.0109, mix.decode.acc_seg: 78.2782 2023-10-26 08:50:29,605 - mmseg - INFO - Iter [550/40000] lr: 2.166e-05, eta: 10:10:00, time: 0.948, data_time: 0.011, memory: 9743, decode.loss_seg: 0.0284, decode.acc_seg: 62.9740, src.loss_imnet_feat_dist: 0.0414, mix.decode.loss_seg: 0.0087, mix.decode.acc_seg: 85.7456 2023-10-26 08:51:17,205 - mmseg - INFO - Iter [600/40000] lr: 2.360e-05, eta: 10:10:33, time: 0.952, data_time: 0.011, memory: 9743, decode.loss_seg: 0.0178, decode.acc_seg: 58.3607, src.loss_imnet_feat_dist: 0.0394, mix.decode.loss_seg: 0.0052, mix.decode.acc_seg: 79.5689 2023-10-26 08:52:04,818 - mmseg - INFO - Iter [650/40000] lr: 2.554e-05, eta: 10:10:54, time: 0.952, data_time: 0.011, memory: 9743, decode.loss_seg: 0.0158, decode.acc_seg: 57.5038, src.loss_imnet_feat_dist: 0.0420,
...
mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 82.5667 2023-10-26 09:40:46,738 - mmseg - INFO - Iter [3650/40000] lr: 5.453e-05, eta: 9:45:28, time: 0.984, data_time: 0.013, memory: 9743, decode.loss_seg: 0.0001, decode.acc_seg: 59.8711, src.loss_imnet_feat_dist: 0.0475, mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 77.3620 2023-10-26 09:41:35,947 - mmseg - INFO - Iter [3700/40000] lr: 5.445e-05, eta: 9:44:49, time: 0.984, data_time: 0.013, memory: 9743, decode.loss_seg: 0.0001, decode.acc_seg: 71.5709, src.loss_imnet_feat_dist: 0.0414, mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 86.6108 2023-10-26 09:42:25,154 - mmseg - INFO - Iter [3750/40000] lr: 5.438e-05, eta: 9:44:09, time: 0.984, data_time: 0.013, memory: 9743, decode.loss_seg: 0.0001, decode.acc_seg: 56.7687, src.loss_imnet_feat_dist: 0.0464, mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 77.5324 2023-10-26 09:43:14,629 - mmseg - INFO - Iter [3800/40000] lr: 5.430e-05, eta: 9:43:31, time: 0.990, data_time: 0.013, memory: 9743, decode.loss_seg: 0.0001, decode.acc_seg: 59.3930, src.loss_imnet_feat_dist: 0.0530, mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 80.0578 2023-10-26 09:44:04,128 - mmseg - INFO - Iter [3850/40000] lr: 5.423e-05, eta: 9:42:54, time: 0.990, data_time: 0.013, memory: 9743, decode.loss_seg: 0.0001, decode.acc_seg: 57.2199, src.loss_imnet_feat_dist: 0.0457, mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 79.8055 2023-10-26 09:44:53,500 - mmseg - INFO - Iter [3900/40000] lr: 5.415e-05, eta: 9:42:15, time: 0.987, data_time: 0.013, memory: 9743, decode.loss_seg: 0.0000, decode.acc_seg: 53.7303, src.loss_imnet_feat_dist: 0.0461, mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 76.1746 2023-10-26 09:45:42,723 - mmseg - INFO - Iter [3950/40000] lr: 5.408e-05, eta: 9:41:34, time: 0.985, data_time: 0.013, memory: 9743, decode.loss_seg: 0.0001, decode.acc_seg: 54.3883, src.loss_imnet_feat_dist: 0.0487, mix.decode.loss_seg: 0.0000, mix.decode.acc_seg: 74.0439 2023-10-26 09:47:06,376 - mmseg - INFO - per class results: 2023-10-26 09:47:06,377 - mmseg - INFO - +------------+-------+-------+ | Class | IoU | Acc | +------------+-------+-------+ | background | 31.21 | 100.0 | | forest | 0.0 | 0.0 | | shrubs | 0.0 | 0.0 | +------------+-------+-------+ 2023-10-26 09:47:06,377 - mmseg - INFO - Summary: 2023-10-26 09:47:06,377 - mmseg - INFO - +-------+------+-------+ | aAcc | mIoU | mAcc | +-------+------+-------+ | 31.21 | 10.4 | 33.33 | +-------+------+-------+ 2023-10-26 09:47:06,380 - mmseg - INFO - Exp name: gta2cs_uda_warm_fdthings_rcs_croppl_a999_daformer_mitb5_s0 2023-10-26 09:47:06,380 - mmseg - INFO - Iter [440/40000] lr: 5.400e-05, eta: 9:40:53, time: 0.986, data_time: 0.013, memory: 9743, aAcc: 0.3121, mIoU: 0.1040, mAcc: 0.3333, IoU.background: 0.3121, IoU.forest: 0.0000, IoU.shrubs: 0.0000, Acc.background: 1.0000, Acc.forest: 0.0000, Acc.shrubs: 0.0000, decode.loss_seg: 0.0001, decode.acc_seg: 63.4068, src.loss_imnet_feat_dist: 0.0487, mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 79.8197
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hello, I want to use my own dataset for training, but I found that the values of both decode.loss_seg and mix.decode.loss_seg drop to 0 very quickly during training, I'm not sure if the problem is with the parameters or the dataset, could you please help me to look at it, part of the training process is as follows
2023-10-26 08:41:59,207 - mmseg - INFO - workflow: [('train', 1)], max: 40000 iters
2023-10-26 08:42:44,761 - mmseg - INFO - Iter [50/40000] lr: 1.958e-06, eta: 10:04:54, time: 0.908, data_time: 0.011, memory: 9743, decode.loss_seg: 0.6010, decode.acc_seg: 13.7835, src.loss_imnet_feat_dist: 0.0329, mix.decode.loss_seg: 0.3329, mix.decode.acc_seg: 35.2100
2023-10-26 08:43:30,109 - mmseg - INFO - Iter [100/40000] lr: 3.950e-06, eta: 10:03:37, time: 0.907, data_time: 0.010, memory: 9743, decode.loss_seg: 0.5742, decode.acc_seg: 41.1594, src.loss_imnet_feat_dist: 0.0358, mix.decode.loss_seg: 0.3116, mix.decode.acc_seg: 55.3378
2023-10-26 08:44:15,362 - mmseg - INFO - Iter [150/40000] lr: 5.938e-06, eta: 10:02:17, time: 0.905, data_time: 0.010, memory: 9743, decode.loss_seg: 0.3623, decode.acc_seg: 40.3447, src.loss_imnet_feat_dist: 0.0399, mix.decode.loss_seg: 0.1926, mix.decode.acc_seg: 51.9543
2023-10-26 08:45:01,109 - mmseg - INFO - Iter [200/40000] lr: 7.920e-06, eta: 10:02:52, time: 0.915, data_time: 0.010, memory: 9743, decode.loss_seg: 0.3590, decode.acc_seg: 53.8857, src.loss_imnet_feat_dist: 0.0398, mix.decode.loss_seg: 0.1525, mix.decode.acc_seg: 66.6974
2023-10-26 08:45:47,103 - mmseg - INFO - Iter [250/40000] lr: 9.898e-06, eta: 10:03:34, time: 0.920, data_time: 0.010, memory: 9743, decode.loss_seg: 0.2208, decode.acc_seg: 56.3512, src.loss_imnet_feat_dist: 0.0395, mix.decode.loss_seg: 0.0804, mix.decode.acc_seg: 68.9543
2023-10-26 08:46:33,793 - mmseg - INFO - Iter [300/40000] lr: 1.187e-05, eta: 10:05:19, time: 0.934, data_time: 0.011, memory: 9743, decode.loss_seg: 0.1678, decode.acc_seg: 59.7599, src.loss_imnet_feat_dist: 0.0380, mix.decode.loss_seg: 0.0767, mix.decode.acc_seg: 73.5273
2023-10-26 08:47:20,687 - mmseg - INFO - Iter [350/40000] lr: 1.384e-05, eta: 10:06:44, time: 0.938, data_time: 0.011, memory: 9743, decode.loss_seg: 0.1187, decode.acc_seg: 63.4222, src.loss_imnet_feat_dist: 0.0379, mix.decode.loss_seg: 0.0478, mix.decode.acc_seg: 83.0094
2023-10-26 08:48:07,717 - mmseg - INFO - Iter [400/40000] lr: 1.580e-05, eta: 10:07:49, time: 0.941, data_time: 0.011, memory: 9743, decode.loss_seg: 0.0693, decode.acc_seg: 59.1260, src.loss_imnet_feat_dist: 0.0387, mix.decode.loss_seg: 0.0233, mix.decode.acc_seg: 85.0879
2023-10-26 08:48:54,974 - mmseg - INFO - Iter [450/40000] lr: 1.776e-05, eta: 10:08:49, time: 0.945, data_time: 0.011, memory: 9743, decode.loss_seg: 0.0573, decode.acc_seg: 62.6751, src.loss_imnet_feat_dist: 0.0399, mix.decode.loss_seg: 0.0157, mix.decode.acc_seg: 78.6375
2023-10-26 08:49:42,184 - mmseg - INFO - Iter [500/40000] lr: 1.971e-05, eta: 10:09:24, time: 0.944, data_time: 0.011, memory: 9743, decode.loss_seg: 0.0384, decode.acc_seg: 63.9637, src.loss_imnet_feat_dist: 0.0381, mix.decode.loss_seg: 0.0109, mix.decode.acc_seg: 78.2782
2023-10-26 08:50:29,605 - mmseg - INFO - Iter [550/40000] lr: 2.166e-05, eta: 10:10:00, time: 0.948, data_time: 0.011, memory: 9743, decode.loss_seg: 0.0284, decode.acc_seg: 62.9740, src.loss_imnet_feat_dist: 0.0414, mix.decode.loss_seg: 0.0087, mix.decode.acc_seg: 85.7456
2023-10-26 08:51:17,205 - mmseg - INFO - Iter [600/40000] lr: 2.360e-05, eta: 10:10:33, time: 0.952, data_time: 0.011, memory: 9743, decode.loss_seg: 0.0178, decode.acc_seg: 58.3607, src.loss_imnet_feat_dist: 0.0394, mix.decode.loss_seg: 0.0052, mix.decode.acc_seg: 79.5689
2023-10-26 08:52:04,818 - mmseg - INFO - Iter [650/40000] lr: 2.554e-05, eta: 10:10:54, time: 0.952, data_time: 0.011, memory: 9743, decode.loss_seg: 0.0158, decode.acc_seg: 57.5038, src.loss_imnet_feat_dist: 0.0420,
...
mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 82.5667
2023-10-26 09:40:46,738 - mmseg - INFO - Iter [3650/40000] lr: 5.453e-05, eta: 9:45:28, time: 0.984, data_time: 0.013, memory: 9743, decode.loss_seg: 0.0001, decode.acc_seg: 59.8711, src.loss_imnet_feat_dist: 0.0475, mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 77.3620
2023-10-26 09:41:35,947 - mmseg - INFO - Iter [3700/40000] lr: 5.445e-05, eta: 9:44:49, time: 0.984, data_time: 0.013, memory: 9743, decode.loss_seg: 0.0001, decode.acc_seg: 71.5709, src.loss_imnet_feat_dist: 0.0414, mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 86.6108
2023-10-26 09:42:25,154 - mmseg - INFO - Iter [3750/40000] lr: 5.438e-05, eta: 9:44:09, time: 0.984, data_time: 0.013, memory: 9743, decode.loss_seg: 0.0001, decode.acc_seg: 56.7687, src.loss_imnet_feat_dist: 0.0464, mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 77.5324
2023-10-26 09:43:14,629 - mmseg - INFO - Iter [3800/40000] lr: 5.430e-05, eta: 9:43:31, time: 0.990, data_time: 0.013, memory: 9743, decode.loss_seg: 0.0001, decode.acc_seg: 59.3930, src.loss_imnet_feat_dist: 0.0530, mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 80.0578
2023-10-26 09:44:04,128 - mmseg - INFO - Iter [3850/40000] lr: 5.423e-05, eta: 9:42:54, time: 0.990, data_time: 0.013, memory: 9743, decode.loss_seg: 0.0001, decode.acc_seg: 57.2199, src.loss_imnet_feat_dist: 0.0457, mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 79.8055
2023-10-26 09:44:53,500 - mmseg - INFO - Iter [3900/40000] lr: 5.415e-05, eta: 9:42:15, time: 0.987, data_time: 0.013, memory: 9743, decode.loss_seg: 0.0000, decode.acc_seg: 53.7303, src.loss_imnet_feat_dist: 0.0461, mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 76.1746
2023-10-26 09:45:42,723 - mmseg - INFO - Iter [3950/40000] lr: 5.408e-05, eta: 9:41:34, time: 0.985, data_time: 0.013, memory: 9743, decode.loss_seg: 0.0001, decode.acc_seg: 54.3883, src.loss_imnet_feat_dist: 0.0487, mix.decode.loss_seg: 0.0000, mix.decode.acc_seg: 74.0439
2023-10-26 09:47:06,376 - mmseg - INFO - per class results:
2023-10-26 09:47:06,377 - mmseg - INFO -
+------------+-------+-------+
| Class | IoU | Acc |
+------------+-------+-------+
| background | 31.21 | 100.0 |
| forest | 0.0 | 0.0 |
| shrubs | 0.0 | 0.0 |
+------------+-------+-------+
2023-10-26 09:47:06,377 - mmseg - INFO - Summary:
2023-10-26 09:47:06,377 - mmseg - INFO -
+-------+------+-------+
| aAcc | mIoU | mAcc |
+-------+------+-------+
| 31.21 | 10.4 | 33.33 |
+-------+------+-------+
2023-10-26 09:47:06,380 - mmseg - INFO - Exp name: gta2cs_uda_warm_fdthings_rcs_croppl_a999_daformer_mitb5_s0
2023-10-26 09:47:06,380 - mmseg - INFO - Iter [440/40000] lr: 5.400e-05, eta: 9:40:53, time: 0.986, data_time: 0.013, memory: 9743, aAcc: 0.3121, mIoU: 0.1040, mAcc: 0.3333, IoU.background: 0.3121, IoU.forest: 0.0000, IoU.shrubs: 0.0000, Acc.background: 1.0000, Acc.forest: 0.0000, Acc.shrubs: 0.0000, decode.loss_seg: 0.0001, decode.acc_seg: 63.4068, src.loss_imnet_feat_dist: 0.0487, mix.decode.loss_seg: 0.0001, mix.decode.acc_seg: 79.8197
The text was updated successfully, but these errors were encountered: