-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathdacs_transforms.py
120 lines (99 loc) · 4.01 KB
/
dacs_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Obtained from: https://github.com/vikolss/DACS
# Copyright (c) 2020 vikolss. Licensed under the MIT License
# A copy of the license is available at resources/license_dacs
import kornia
import numpy as np
import torch
import torch.nn as nn
def strong_transform(param, data=None, target=None):
assert ((data is not None) or (target is not None))
data, target = one_mix(mask=param['mix'], data=data, target=target)
data, target = color_jitter(
color_jitter=param['color_jitter'],
s=param['color_jitter_s'],
p=param['color_jitter_p'],
mean=param['mean'],
std=param['std'],
data=data,
target=target)
data, target = gaussian_blur(blur=param['blur'], data=data, target=target)
return data, target
def get_mean_std(img_metas, dev):
mean = [
torch.as_tensor(img_metas[i]['img_norm_cfg']['mean'], device=dev)
for i in range(len(img_metas))
]
mean = torch.stack(mean).view(-1, 3, 1, 1)
std = [
torch.as_tensor(img_metas[i]['img_norm_cfg']['std'], device=dev)
for i in range(len(img_metas))
]
std = torch.stack(std).view(-1, 3, 1, 1)
return mean, std
def denorm(img, mean, std):
return img.mul(std).add(mean) / 255.0
def denorm_(img, mean, std):
img.mul_(std).add_(mean).div_(255.0)
def renorm_(img, mean, std):
img.mul_(255.0).sub_(mean).div_(std)
def color_jitter(color_jitter, mean, std, data=None, target=None, s=.25, p=.2):
# s is the strength of colorjitter
if not (data is None):
if data.shape[1] == 3:
if color_jitter > p:
if isinstance(s, dict):
seq = nn.Sequential(kornia.augmentation.ColorJitter(**s))
else:
seq = nn.Sequential(
kornia.augmentation.ColorJitter(
brightness=s, contrast=s, saturation=s, hue=s))
denorm_(data, mean, std)
data = seq(data)
renorm_(data, mean, std)
return data, target
def gaussian_blur(blur, data=None, target=None):
if not (data is None):
if data.shape[1] == 3:
if blur > 0.5:
sigma = np.random.uniform(0.15, 1.15)
kernel_size_y = int(
np.floor(
np.ceil(0.1 * data.shape[2]) - 0.5 +
np.ceil(0.1 * data.shape[2]) % 2))
kernel_size_x = int(
np.floor(
np.ceil(0.1 * data.shape[3]) - 0.5 +
np.ceil(0.1 * data.shape[3]) % 2))
kernel_size = (kernel_size_y, kernel_size_x)
seq = nn.Sequential(
kornia.filters.GaussianBlur2d(
kernel_size=kernel_size, sigma=(sigma, sigma)))
data = seq(data)
return data, target
def get_class_masks(labels):
class_masks = []
for label in labels:
classes = torch.unique(labels)
nclasses = classes.shape[0]
class_choice = np.random.choice(
nclasses, int((nclasses + nclasses % 2) / 2), replace=False)
classes = classes[torch.Tensor(class_choice).long()]
class_masks.append(generate_class_mask(label, classes).unsqueeze(0))
return class_masks
def generate_class_mask(label, classes):
label, classes = torch.broadcast_tensors(label,
classes.unsqueeze(1).unsqueeze(2))
class_mask = label.eq(classes).sum(0, keepdims=True)
return class_mask
def one_mix(mask, data=None, target=None):
if mask is None:
return data, target
if not (data is None):
stackedMask0, _ = torch.broadcast_tensors(mask[0], data[0])
data = (stackedMask0 * data[0] +
(1 - stackedMask0) * data[1]).unsqueeze(0)
if not (target is None):
stackedMask0, _ = torch.broadcast_tensors(mask[0], target[0])
target = (stackedMask0 * target[0] +
(1 - stackedMask0) * target[1]).unsqueeze(0)
return data, target