forked from tolstikhin/wae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwae.py
934 lines (803 loc) · 36.9 KB
/
wae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
# Copyright 2017 Max Planck Society
# Distributed under the BSD-3 Software license,
# (See accompanying file ./LICENSE.txt or copy at
# https://opensource.org/licenses/BSD-3-Clause)
""" Wasserstein Auto-Encoder models
"""
import sys
import time
import os
import numpy as np
import tensorflow as tf
import logging
import ops
import utils
from models import encoder, decoder, z_adversary
from datahandler import datashapes
import costs
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
class WAE(object):
def __init__(self, opts):
logging.error('Building the Tensorflow Graph')
self.sess = tf.Session()
self.opts = opts
# -- Some of the parameters for future use
assert opts['dataset'] in datashapes, 'Unknown dataset.'
self.data_shape = datashapes[opts['dataset']]
# -- Placeholders
self.add_model_placeholders()
self.add_training_placeholders()
sample_size = tf.shape(self.sample_points)[0]
# -- Transformation ops
# Encode the content of sample_points placeholder
res = encoder(opts, inputs=self.sample_points,
is_training=self.is_training)
if opts['e_noise'] in ('deterministic', 'implicit', 'add_noise'):
self.enc_mean, self.enc_sigmas = None, None
if opts['e_noise'] == 'implicit':
self.encoded, self.encoder_A = res
else:
self.encoded, _ = res
elif opts['e_noise'] == 'gaussian':
# Encoder outputs means and variances of Gaussian
enc_mean, enc_sigmas = res[0]
enc_sigmas = tf.clip_by_value(enc_sigmas, -50, 50)
self.enc_mean, self.enc_sigmas = enc_mean, enc_sigmas
if opts['verbose']:
self.add_sigmas_debug()
eps = tf.random_normal((sample_size, opts['zdim']),
0., 1., dtype=tf.float32)
self.encoded = self.enc_mean + tf.multiply(
eps, tf.sqrt(1e-8 + tf.exp(self.enc_sigmas)))
# self.encoded = self.enc_mean + tf.multiply(
# eps, tf.exp(self.enc_sigmas / 2.))
# Decode the points encoded above (i.e. reconstruct)
self.reconstructed, self.reconstructed_logits = \
decoder(opts, noise=self.encoded,
is_training=self.is_training)
# Decode the content of sample_noise
self.decoded, self.decoded_logits = \
decoder(opts, reuse=True, noise=self.sample_noise,
is_training=self.is_training)
# -- Objectives, losses, penalties
self.penalty, self.loss_gan = self.matching_penalty()
self.loss_reconstruct = self.reconstruction_loss()
self.wae_objective = self.loss_reconstruct + \
self.wae_lambda * self.penalty
self.blurriness = self.compute_blurriness()
if opts['e_pretrain']:
self.loss_pretrain = self.pretrain_loss()
else:
self.loss_pretrain = None
self.add_least_gaussian2d_ops()
# -- Optimizers, savers, etc
self.add_optimizers()
self.add_savers()
self.init = tf.global_variables_initializer()
def add_model_placeholders(self):
opts = self.opts
shape = self.data_shape
data = tf.placeholder(
tf.float32, [None] + shape, name='real_points_ph')
noise = tf.placeholder(
tf.float32, [None] + [opts['zdim']], name='noise_ph')
self.sample_points = data
self.sample_noise = noise
def add_training_placeholders(self):
opts = self.opts
decay = tf.placeholder(tf.float32, name='rate_decay_ph')
wae_lambda = tf.placeholder(tf.float32, name='lambda_ph')
is_training = tf.placeholder(tf.bool, name='is_training_ph')
self.lr_decay = decay
self.wae_lambda = wae_lambda
self.is_training = is_training
def pretrain_loss(self):
opts = self.opts
# Adding ops to pretrain the encoder so that mean and covariance
# of Qz will try to match those of Pz
mean_pz = tf.reduce_mean(self.sample_noise, axis=0, keep_dims=True)
mean_qz = tf.reduce_mean(self.encoded, axis=0, keep_dims=True)
mean_loss = tf.reduce_mean(tf.square(mean_pz - mean_qz))
cov_pz = tf.matmul(self.sample_noise - mean_pz,
self.sample_noise - mean_pz, transpose_a=True)
cov_pz /= opts['e_pretrain_sample_size'] - 1.
cov_qz = tf.matmul(self.encoded - mean_qz,
self.encoded - mean_qz, transpose_a=True)
cov_qz /= opts['e_pretrain_sample_size'] - 1.
cov_loss = tf.reduce_mean(tf.square(cov_pz - cov_qz))
return mean_loss + cov_loss
def add_savers(self):
opts = self.opts
saver = tf.train.Saver(max_to_keep=10)
tf.add_to_collection('real_points_ph', self.sample_points)
tf.add_to_collection('noise_ph', self.sample_noise)
tf.add_to_collection('is_training_ph', self.is_training)
if self.enc_mean is not None:
tf.add_to_collection('encoder_mean', self.enc_mean)
tf.add_to_collection('encoder_var', self.enc_sigmas)
if opts['e_noise'] == 'implicit':
tf.add_to_collection('encoder_A', self.encoder_A)
tf.add_to_collection('encoder', self.encoded)
tf.add_to_collection('decoder', self.decoded)
if self.loss_gan:
tf.add_to_collection('disc_logits_Pz', self.loss_gan[1])
tf.add_to_collection('disc_logits_Qz', self.loss_gan[2])
self.saver = saver
def add_least_gaussian2d_ops(self):
""" Add ops searching for the 2d plane in z_dim hidden space
corresponding to the 'least Gaussian' look of the sample
"""
opts = self.opts
with tf.variable_scope('leastGaussian2d'):
# Projection matrix which we are going to tune
sample = tf.placeholder(
tf.float32, [None, opts['zdim']], name='sample_ph')
v = tf.get_variable(
"proj_v", [opts['zdim'], 1],
tf.float32, tf.random_normal_initializer(stddev=1.))
u = tf.get_variable(
"proj_u", [opts['zdim'], 1],
tf.float32, tf.random_normal_initializer(stddev=1.))
npoints = tf.cast(tf.shape(sample)[0], tf.int32)
# First we need to make sure projection matrix is orthogonal
v_norm = tf.nn.l2_normalize(v, 0)
dotprod = tf.reduce_sum(tf.multiply(u, v_norm))
u_ort = u - dotprod * v_norm
u_norm = tf.nn.l2_normalize(u_ort, 0)
Mproj = tf.concat([v_norm, u_norm], 1)
sample_proj = tf.matmul(sample, Mproj)
a = tf.eye(npoints)
a -= tf.ones([npoints, npoints]) / tf.cast(npoints, tf.float32)
b = tf.matmul(sample_proj, tf.matmul(a, a), transpose_a=True)
b = tf.matmul(b, sample_proj)
# Sample covariance matrix
covhat = b / (tf.cast(npoints, tf.float32) - 1)
gcov = opts['pz_scale'] ** 2. * tf.eye(2)
# l2 distance between sample cov and the Gaussian cov
projloss = tf.reduce_sum(tf.square(covhat - gcov))
# Also account for the first moment, i.e. expected value
projloss += tf.reduce_sum(tf.square(tf.reduce_mean(sample_proj, 0)))
# We are maximizing
projloss = -projloss
optim = tf.train.AdamOptimizer(0.001, 0.9)
optim = optim.minimize(projloss, var_list=[v, u])
self.proj_u = u_norm
self.proj_v = v_norm
self.proj_sample = sample
self.proj_covhat = covhat
self.proj_loss = projloss
self.proj_opt = optim
def matching_penalty(self):
opts = self.opts
loss_gan = None
sample_qz = self.encoded
sample_pz = self.sample_noise
if opts['z_test'] == 'gan':
loss_gan, loss_match = self.gan_penalty(sample_qz, sample_pz)
elif opts['z_test'] == 'mmd':
loss_match = self.mmd_penalty(sample_qz, sample_pz)
else:
assert False, 'Unknown penalty %s' % opts['z_test']
return loss_match, loss_gan
def mmd_penalty(self, sample_qz, sample_pz):
opts = self.opts
sigma2_p = opts['pz_scale'] ** 2
kernel = opts['mmd_kernel']
n = utils.get_batch_size(sample_qz)
n = tf.cast(n, tf.int32)
nf = tf.cast(n, tf.float32)
half_size = (n * n - n) / 2
norms_pz = tf.reduce_sum(tf.square(sample_pz), axis=1, keep_dims=True)
dotprods_pz = tf.matmul(sample_pz, sample_pz, transpose_b=True)
distances_pz = norms_pz + tf.transpose(norms_pz) - 2. * dotprods_pz
norms_qz = tf.reduce_sum(tf.square(sample_qz), axis=1, keep_dims=True)
dotprods_qz = tf.matmul(sample_qz, sample_qz, transpose_b=True)
distances_qz = norms_qz + tf.transpose(norms_qz) - 2. * dotprods_qz
dotprods = tf.matmul(sample_qz, sample_pz, transpose_b=True)
distances = norms_qz + tf.transpose(norms_pz) - 2. * dotprods
# if opts['verbose']:
# distances = tf.Print(
# distances,
# [tf.nn.top_k(tf.reshape(distances_qz, [-1]), 1).values[0]],
# 'Maximal Qz squared pairwise distance:')
# distances = tf.Print(distances, [tf.reduce_mean(distances_qz)],
# 'Average Qz squared pairwise distance:')
# distances = tf.Print(
# distances,
# [tf.nn.top_k(tf.reshape(distances_pz, [-1]), 1).values[0]],
# 'Maximal Pz squared pairwise distance:')
# distances = tf.Print(distances, [tf.reduce_mean(distances_pz)],
# 'Average Pz squared pairwise distance:')
if kernel == 'RBF':
# Median heuristic for the sigma^2 of Gaussian kernel
sigma2_k = tf.nn.top_k(
tf.reshape(distances, [-1]), half_size).values[half_size - 1]
sigma2_k += tf.nn.top_k(
tf.reshape(distances_qz, [-1]), half_size).values[half_size - 1]
# Maximal heuristic for the sigma^2 of Gaussian kernel
# sigma2_k = tf.nn.top_k(tf.reshape(distances_qz, [-1]), 1).values[0]
# sigma2_k += tf.nn.top_k(tf.reshape(distances, [-1]), 1).values[0]
# sigma2_k = opts['latent_space_dim'] * sigma2_p
if opts['verbose']:
sigma2_k = tf.Print(sigma2_k, [sigma2_k], 'Kernel width:')
res1 = tf.exp( - distances_qz / 2. / sigma2_k)
res1 += tf.exp( - distances_pz / 2. / sigma2_k)
res1 = tf.multiply(res1, 1. - tf.eye(n))
res1 = tf.reduce_sum(res1) / (nf * nf - nf)
res2 = tf.exp( - distances / 2. / sigma2_k)
res2 = tf.reduce_sum(res2) * 2. / (nf * nf)
stat = res1 - res2
elif kernel == 'IMQ':
# k(x, y) = C / (C + ||x - y||^2)
# C = tf.nn.top_k(tf.reshape(distances, [-1]), half_size).values[half_size - 1]
# C += tf.nn.top_k(tf.reshape(distances_qz, [-1]), half_size).values[half_size - 1]
if opts['pz'] == 'normal':
Cbase = 2. * opts['zdim'] * sigma2_p
elif opts['pz'] == 'sphere':
Cbase = 2.
elif opts['pz'] == 'uniform':
# E ||x - y||^2 = E[sum (xi - yi)^2]
# = zdim E[(xi - yi)^2]
# = const * zdim
Cbase = opts['zdim']
stat = 0.
for scale in [.1, .2, .5, 1., 2., 5., 10.]:
C = Cbase * scale
res1 = C / (C + distances_qz)
res1 += C / (C + distances_pz)
res1 = tf.multiply(res1, 1. - tf.eye(n))
res1 = tf.reduce_sum(res1) / (nf * nf - nf)
res2 = C / (C + distances)
res2 = tf.reduce_sum(res2) * 2. / (nf * nf)
stat += res1 - res2
return stat
def gan_penalty(self, sample_qz, sample_pz):
opts = self.opts
# Pz = Qz test based on GAN in the Z space
logits_Pz = z_adversary(opts, sample_pz)
logits_Qz = z_adversary(opts, sample_qz, reuse=True)
loss_Pz = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits_Pz, labels=tf.ones_like(logits_Pz)))
loss_Qz = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits_Qz, labels=tf.zeros_like(logits_Qz)))
loss_Qz_trick = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits_Qz, labels=tf.ones_like(logits_Qz)))
loss_adversary = self.wae_lambda * (loss_Pz + loss_Qz)
# Non-saturating loss trick
loss_match = loss_Qz_trick
return (loss_adversary, logits_Pz, logits_Qz), loss_match
def reconstruction_loss(self):
opts = self.opts
real = self.sample_points
reconstr = self.reconstructed
if opts['cost'] == 'l2':
# c(x,y) = ||x - y||_2
loss = tf.reduce_sum(tf.square(real - reconstr), axis=[1, 2, 3])
loss = 0.2 * tf.reduce_mean(tf.sqrt(1e-08 + loss))
elif opts['cost'] == 'l2sq':
# c(x,y) = ||x - y||_2^2
loss = tf.reduce_sum(tf.square(real - reconstr), axis=[1, 2, 3])
loss = 0.05 * tf.reduce_mean(loss)
elif opts['cost'] == 'l1':
# c(x,y) = ||x - y||_1
loss = tf.reduce_sum(tf.abs(real - reconstr), axis=[1, 2, 3])
loss = 0.02 * tf.reduce_mean(loss)
else:
assert False, 'Unknown cost function %s' % opts['cost']
return loss
def compute_blurriness(self):
images = self.sample_points
sample_size = tf.shape(self.sample_points)[0]
# First convert to greyscale
if self.data_shape[-1] > 1:
# We have RGB
images = tf.image.rgb_to_grayscale(images)
# Next convolve with the Laplace filter
lap_filter = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]])
lap_filter = lap_filter.reshape([3, 3, 1, 1])
conv = tf.nn.conv2d(images, lap_filter,
strides=[1, 1, 1, 1], padding='VALID')
_, lapvar = tf.nn.moments(conv, axes=[1, 2, 3])
return lapvar
def optimizer(self, lr, decay=1.):
opts = self.opts
lr *= decay
if opts["optimizer"] == "sgd":
return tf.train.GradientDescentOptimizer(lr)
elif opts["optimizer"] == "adam":
return tf.train.AdamOptimizer(lr, beta1=opts["adam_beta1"])
else:
assert False, 'Unknown optimizer.'
def add_optimizers(self):
opts = self.opts
lr = opts['lr']
lr_adv = opts['lr_adv']
z_adv_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='z_adversary')
encoder_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='encoder')
decoder_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator')
ae_vars = encoder_vars + decoder_vars
if opts['verbose']:
logging.error('Param num in AE: %d' % \
np.sum([np.prod([int(d) for d in v.get_shape()]) \
for v in ae_vars]))
# Auto-encoder optimizer
opt = self.optimizer(lr, self.lr_decay)
self.ae_opt = opt.minimize(loss=self.wae_objective,
var_list=encoder_vars + decoder_vars)
# Discriminator optimizer for WAE-GAN
if opts['z_test'] == 'gan':
opt = self.optimizer(lr_adv, self.lr_decay)
self.z_adv_opt = opt.minimize(
loss=self.loss_gan[0], var_list=z_adv_vars)
else:
self.z_adv_opt = None
# Encoder optimizer
if opts['e_pretrain']:
opt = self.optimizer(lr)
self.pretrain_opt = opt.minimize(loss=self.loss_pretrain,
var_list=encoder_vars)
else:
self.pretrain_opt = None
def sample_pz(self, num=100):
opts = self.opts
noise = None
distr = opts['pz']
if distr == 'uniform':
noise = np.random.uniform(
-1, 1, [num, opts["zdim"]]).astype(np.float32)
elif distr in ('normal', 'sphere'):
mean = np.zeros(opts["zdim"])
cov = np.identity(opts["zdim"])
noise = np.random.multivariate_normal(
mean, cov, num).astype(np.float32)
if distr == 'sphere':
noise = noise / np.sqrt(
np.sum(noise * noise, axis=1))[:, np.newaxis]
return opts['pz_scale'] * noise
def pretrain_encoder(self, data):
opts = self.opts
steps_max = 200
batch_size = opts['e_pretrain_sample_size']
for step in xrange(steps_max):
train_size = data.num_points
data_ids = np.random.choice(train_size, min(train_size, batch_size),
replace=False)
batch_images = data.data[data_ids].astype(np.float)
batch_noise = self.sample_pz(batch_size)
[_, loss_pretrain] = self.sess.run(
[self.pretrain_opt,
self.loss_pretrain],
feed_dict={self.sample_points: batch_images,
self.sample_noise: batch_noise,
self.is_training: True})
if opts['verbose']:
logging.error('Step %d/%d, loss=%f' % (
step, steps_max, loss_pretrain))
if loss_pretrain < 0.1:
break
def least_gaussian_2d(self, X):
"""
Given a sample X of shape (n_points, n_z) find 2d plain
such that projection looks least Gaussian
"""
opts = self.opts
with self.sess.as_default(), self.sess.graph.as_default():
sample = self.proj_sample
optim = self.proj_opt
loss = self.proj_loss
u = self.proj_u
v = self.proj_v
covhat = self.proj_covhat
proj_mat = tf.concat([v, u], 1).eval()
dot_prod = -1
best_of_runs = 10e5 # Any positive value would do
updated = False
for _ in xrange(3):
# We will run 3 times from random inits
loss_prev = 10e5 # Any positive value would do
proj_vars = tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope='leastGaussian2d')
self.sess.run(tf.variables_initializer(proj_vars))
step = 0
for _ in xrange(5000):
self.sess.run(optim, feed_dict={sample:X})
step += 1
if step % 10 == 0:
loss_cur = loss.eval(feed_dict={sample: X})
rel_imp = abs(loss_cur - loss_prev) / abs(loss_prev)
if rel_imp < 1e-2:
break
loss_prev = loss_cur
loss_final = loss.eval(feed_dict={sample: X})
if loss_final < best_of_runs:
updated = True
best_of_runs = loss_final
proj_mat = tf.concat([v, u], 1).eval()
dot_prod = tf.reduce_sum(tf.multiply(u, v)).eval()
if not updated:
logging.error('WARNING: possible bug in the worst 2d projection')
return proj_mat, dot_prod
def train(self, data):
opts = self.opts
if opts['verbose']:
logging.error(opts)
logging.error('Training WAE')
losses = []
losses_rec = []
losses_match = []
blurr_vals = []
encoding_changes = []
enc_test_prev = None
batches_num = data.num_points / opts['batch_size']
train_size = data.num_points
self.num_pics = opts['plot_num_pics']
self.fixed_noise = self.sample_pz(opts['plot_num_pics'])
self.sess.run(self.init)
if opts['e_pretrain']:
logging.error('Pretraining the encoder')
self.pretrain_encoder(data)
logging.error('Pretraining the encoder done.')
self.start_time = time.time()
counter = 0
decay = 1.
wae_lambda = opts['lambda']
wait = 0
wait_lambda = 0
real_blurr = self.sess.run(
self.blurriness,
feed_dict={self.sample_points: data.data[:self.num_pics]})
logging.error('Real pictures sharpness = %.5f' % np.min(real_blurr))
for epoch in xrange(opts["epoch_num"]):
# Update learning rate if necessary
if opts['lr_schedule'] == "manual":
if epoch == 30:
decay = decay / 2.
if epoch == 50:
decay = decay / 5.
if epoch == 100:
decay = decay / 10.
elif opts['lr_schedule'] == "manual_smooth":
enum = opts['epoch_num']
decay_t = np.exp(np.log(100.) / enum)
decay = decay / decay_t
elif opts['lr_schedule'] != "plateau":
assert type(opts['lr_schedule']) == float
decay = 1.0 * 10**(-epoch / float(opts['lr_schedule']))
# Save the model
if epoch > 0 and epoch % opts['save_every_epoch'] == 0:
self.saver.save(self.sess,
os.path.join(opts['work_dir'],
'checkpoints',
'trained-wae'),
global_step=counter)
# Iterate over batches
for it in xrange(batches_num):
# Sample batches of data points and Pz noise
data_ids = np.random.choice(
train_size, opts['batch_size'], replace=False)
batch_images = data.data[data_ids].astype(np.float)
batch_noise = self.sample_pz(opts['batch_size'])
# Update encoder and decoder
[_, loss, loss_rec, loss_match] = self.sess.run(
[self.ae_opt,
self.wae_objective,
self.loss_reconstruct,
self.penalty],
feed_dict={self.sample_points: batch_images,
self.sample_noise: batch_noise,
self.lr_decay: decay,
self.wae_lambda: wae_lambda,
self.is_training: True})
# Update the adversary in Z space for WAE-GAN
if opts['z_test'] == 'gan':
loss_adv = self.loss_gan[0]
_ = self.sess.run(
[self.z_adv_opt, loss_adv],
feed_dict={self.sample_points: batch_images,
self.sample_noise: batch_noise,
self.wae_lambda: wae_lambda,
self.lr_decay: decay,
self.is_training: True})
# Update learning rate if necessary
if opts['lr_schedule'] == "plateau":
# First 30 epochs do nothing
if epoch >= 30:
# If no significant progress was made in last 10 epochs
# then decrease the learning rate.
if loss < min(losses[-20 * batches_num:]):
wait = 0
else:
wait += 1
if wait > 10 * batches_num:
decay = max(decay / 1.4, 1e-6)
logging.error('Reduction in lr: %f' % decay)
wait = 0
losses.append(loss)
losses_rec.append(loss_rec)
losses_match.append(loss_match)
if opts['verbose']:
logging.error('Matching penalty after %d steps: %f' % (
counter, losses_match[-1]))
# Update regularizer if necessary
if opts['lambda_schedule'] == 'adaptive':
if wait_lambda >= 999 and len(losses_rec) > 0:
last_rec = losses_rec[-1]
last_match = losses_match[-1]
wae_lambda = 0.5 * wae_lambda + \
0.5 * last_rec / abs(last_match)
if opts['verbose']:
logging.error('Lambda updated to %f' % wae_lambda)
wait_lambda = 0
else:
wait_lambda += 1
counter += 1
# Print debug info
if counter % opts['print_every'] == 0:
now = time.time()
# Auto-encoding test images
[loss_rec_test, enc_test, rec_test] = self.sess.run(
[self.loss_reconstruct, self.encoded, self.reconstructed],
feed_dict={self.sample_points: data.test_data[:self.num_pics],
self.is_training: False})
if enc_test_prev is not None:
changes = np.mean((enc_test - enc_test_prev) ** 2.)
encoding_changes.append(changes)
else:
changes = np.mean((enc_test) ** 2.)
encoding_changes.append(changes)
enc_test_prev = enc_test
# Auto-encoding training images
[loss_rec_train, enc_train, rec_train] = self.sess.run(
[self.loss_reconstruct, self.encoded, self.reconstructed],
feed_dict={self.sample_points: data.data[:self.num_pics],
self.is_training: False})
# Random samples generated by the model
sample_gen = self.sess.run(
self.decoded,
feed_dict={self.sample_noise: self.fixed_noise,
self.is_training: False})
# Blurriness measures
gen_blurr = self.sess.run(
self.blurriness,
feed_dict={self.sample_points: sample_gen})
blurr_vals.append(np.min(gen_blurr))
# Printing various loss values
debug_str = 'EPOCH: %d/%d, BATCH:%d/%d, BATCH/SEC:%.2f' % (
epoch + 1, opts['epoch_num'],
it + 1, batches_num,
float(counter) / (now - self.start_time))
debug_str += ' (WAE_LOSS=%.5f, RECON_LOSS=%.5f, ' \
'MATCH_LOSS=%.5f, ' \
'RECON_LOSS_TEST=%.5f, ' \
'SHARPNESS=%.5f)' % (
losses[-1], losses_rec[-1],
losses_match[-1], loss_rec_test, np.min(gen_blurr))
logging.error(debug_str)
# Printing debug info for encoder variances if applicable
if opts['e_noise'] == 'gaussian':
logging.error('Per dimension encoder variances:')
per_dim_range = self.debug_sigmas.eval(
session = self.sess,
feed_dict={self.sample_points: data.test_data[:500],
self.is_training: False})
for idim in range(per_dim_range.shape[0]):
if per_dim_range[idim][1] > 0.:
logging.error(
'dim%.4d: [%.2f; %.2f] <------' % (idim,
per_dim_range[idim][0],
per_dim_range[idim][1]))
else:
logging.error(
'dim%.4d: [%.2f; %.2f]' % (idim,
per_dim_range[idim][0],
per_dim_range[idim][1]))
# Choosing the 2d projection for Pz vs Qz plots
pz_noise = self.sample_pz(opts['plot_num_pics'])
if opts['pz'] == 'normal' and opts['zdim'] > 2:
# Finding the least Gaussian projection for Qz
proj_mat, check = self.least_gaussian_2d(
np.vstack([enc_train, enc_test]))
# Projecting samples from Qz and Pz on this 2d plain
Qz_train = np.dot(enc_train, proj_mat)
Qz_test = np.dot(enc_test, proj_mat)
Pz = np.dot(pz_noise, proj_mat)
else:
Qz_train = enc_train[:, :2]
Qz_test = enc_test[:, :2]
Pz = pz_noise[:, :2]
# Making plots
save_plots(opts, data.data[:self.num_pics],
data.test_data[:self.num_pics],
rec_train[:self.num_pics],
rec_test[:self.num_pics],
sample_gen,
Qz_train, Qz_test, Pz,
losses_rec, losses_match, blurr_vals,
encoding_changes,
'res_e%04d_mb%05d.png' % (epoch, it))
# Save the final model
if epoch > 0:
self.saver.save(self.sess,
os.path.join(opts['work_dir'],
'checkpoints',
'trained-wae-final'),
global_step=counter)
def add_sigmas_debug(self):
# Ops to debug variances of random encoders
enc_sigmas = self.enc_sigmas
enc_sigmas = tf.Print(
enc_sigmas,
[tf.nn.top_k(tf.reshape(enc_sigmas, [-1]), 1).values[0]],
'Maximal log sigmas:')
enc_sigmas = tf.Print(
enc_sigmas,
[-tf.nn.top_k(tf.reshape(-enc_sigmas, [-1]), 1).values[0]],
'Minimal log sigmas:')
self.enc_sigmas = enc_sigmas
enc_sigmas_t = tf.transpose(self.enc_sigmas)
max_per_dim = tf.reshape(tf.nn.top_k(enc_sigmas_t, 1).values, [-1, 1])
min_per_dim = tf.reshape(-tf.nn.top_k(-enc_sigmas_t, 1).values, [-1, 1])
per_dim = tf.concat([min_per_dim, max_per_dim], axis=1)
self.debug_sigmas = per_dim
def save_plots(opts, sample_train, sample_test,
recon_train, recon_test,
sample_gen,
Qz_train, Qz_test, Pz,
losses_rec, losses_match, blurr_vals,
encoding_changes,
filename):
""" Generates and saves the plot of the following layout:
img1 | img2 | img3
img4 | img6 | img5
img1 - test reconstructions
img2 - train reconstructions
img3 - samples
img4 - Qz vs Pz plots
img5 - real pics
img6 - loss curves
"""
num_pics = opts['plot_num_pics']
num_cols = opts['plot_num_cols']
assert num_pics % num_cols == 0
assert num_pics % 2 == 0
greyscale = sample_train.shape[-1] == 1
if opts['input_normalize_sym']:
sample_train = sample_train / 2. + 0.5
sample_test = sample_test / 2. + 0.5
recon_train = recon_train / 2. + 0.5
recon_test = recon_test / 2. + 0.5
sample_gen = sample_gen / 2. + 0.5
images = []
# Reconstruction plots
for pair in [(sample_train, recon_train),
(sample_test, recon_test)]:
# Arrange pics and reconstructions in a proper way
sample, recon = pair
assert len(sample) == num_pics
assert len(sample) == len(recon)
pics = []
merged = np.vstack([recon, sample])
r_ptr = 0
w_ptr = 0
for _ in range(num_pics / 2):
merged[w_ptr] = sample[r_ptr]
merged[w_ptr + 1] = recon[r_ptr]
r_ptr += 1
w_ptr += 2
for idx in xrange(num_pics):
if greyscale:
pics.append(1. - merged[idx, :, :, :])
else:
pics.append(merged[idx, :, :, :])
# Figuring out a layout
pics = np.array(pics)
image = np.concatenate(np.split(pics, num_cols), axis=2)
image = np.concatenate(image, axis=0)
images.append(image)
# Sample plots
for sample in [sample_gen, sample_train]:
assert len(sample) == num_pics
pics = []
for idx in xrange(num_pics):
if greyscale:
pics.append(1. - sample[idx, :, :, :])
else:
pics.append(sample[idx, :, :, :])
# Figuring out a layout
pics = np.array(pics)
image = np.concatenate(np.split(pics, num_cols), axis=2)
image = np.concatenate(image, axis=0)
images.append(image)
img1, img2, img3, img5 = images
# Creating a pyplot fig
dpi = 100
height_pic = img1.shape[0]
width_pic = img1.shape[1]
fig_height = 4 * height_pic / float(dpi)
fig_width = 6 * width_pic / float(dpi)
fig = plt.figure(figsize=(fig_width, fig_height))
gs = matplotlib.gridspec.GridSpec(2, 3)
# Filling in separate parts of the plot
# First samples and reconstructions
for img, (gi, gj, title) in zip([img1, img2, img3, img5],
[(0, 0, 'train reconstruction'),
(0, 1, 'test reconstruction'),
(0, 2, 'generated samples'),
(1, 2, 'data points')]):
plt.subplot(gs[gi, gj])
if greyscale:
image = img[:, :, 0]
# in Greys higher values correspond to darker colors
ax = plt.imshow(image, cmap='Greys',
interpolation='none', vmin=0., vmax=1.)
else:
ax = plt.imshow(img, interpolation='none', vmin=0., vmax=1.)
ax = plt.subplot(gs[gi, gj])
plt.text(0.47, 1., title,
ha="center", va="bottom", size=30, transform=ax.transAxes)
# Removing ticks
ax.axes.get_xaxis().set_ticks([])
ax.axes.get_yaxis().set_ticks([])
ax.axes.set_xlim([0, width_pic])
ax.axes.set_ylim([height_pic, 0])
ax.axes.set_aspect(1)
# Then the Pz vs Qz plot
ax = plt.subplot(gs[1, 0])
plt.scatter(Pz[:, 0], Pz[:, 1],
color='red', s=70, marker='*', label='Pz')
plt.scatter(Qz_train[:, 0], Qz_train[:, 1], color='blue',
s=20, marker='x', edgecolors='face', label='Qz_train')
plt.scatter(Qz_test[:, 0], Qz_test[:, 1], color='green',
s=20, marker='x', edgecolors='face', label='Qz_test')
plt.text(0.47, 1., 'Pz vs Qz plot',
ha="center", va="bottom", size=30, transform=ax.transAxes)
xmin = min(np.min(Qz_train[:,0]),
np.min(Qz_test[:,0]))
xmax = max(np.max(Qz_train[:,0]),
np.max(Qz_test[:,0]))
magnify = 0.3
width = abs(xmax - xmin)
xmin = xmin - width * magnify
xmax = xmax + width * magnify
ymin = min(np.min(Qz_train[:,1]),
np.min(Qz_test[:,1]))
ymax = max(np.max(Qz_train[:,1]),
np.max(Qz_test[:,1]))
width = abs(ymin - ymax)
ymin = ymin - width * magnify
ymax = ymax + width * magnify
plt.xlim(xmin, xmax)
plt.ylim(ymin, ymax)
plt.legend(loc='upper left')
# The loss curves
ax = plt.subplot(gs[1, 1])
total_num = len(losses_rec)
x_step = max(total_num / 100, 1)
x = np.arange(1, len(losses_rec) + 1, x_step)
y = np.log(np.abs(losses_rec[::x_step]))
plt.plot(x, y, linewidth=2, color='red', label='log(|rec loss|)')
y = np.log(np.abs(losses_match[::x_step]))
plt.plot(x, y, linewidth=2, color='blue', label='log(|match loss|)')
blurr_mod = np.tile(blurr_vals, (opts['print_every'], 1))
blurr_mod = blurr_mod.transpose().reshape(-1)
x_step = max(len(blurr_mod)/ 100, 1)
x = np.arange(1, len(blurr_mod) + 1, x_step)
y = np.log(blurr_mod[::x_step])
plt.plot(x, y, linewidth=2, color='orange', label='log(sharpness)')
if len(encoding_changes) > 0:
x = np.arange(1, len(losses_rec) + 1)
y = np.log(encoding_changes)
x_step = len(x) / len(y)
plt.plot(x[::x_step], y, linewidth=2, color='green', label='log(encoding changes)')
plt.grid(axis='y')
plt.legend(loc='upper right')
# Saving
utils.create_dir(opts['work_dir'])
fig.savefig(utils.o_gfile((opts["work_dir"], filename), 'wb'),
dpi=dpi, format='png')
plt.close()