forked from PREDICT-EPFL/Distributed-DeeP-LCC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataCollection_ModerateScale.asv
214 lines (168 loc) · 6.65 KB
/
dataCollection_ModerateScale.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
% =========================================================================
% Data collection for moderate-scale traffic
% =========================================================================
clc; close all; clear;
addpath('_fcn');
% How many data sets to collect
data_total_number = 100;
h_wait = waitbar(0,'please wait');
for i_data = 1:data_total_number
% -------------------------------------------------------------------------
% Parameter setup
% -------------------------------------------------------------------------
% Type for HDV car-following model
hdv_type = 1; % 1. OVM 2. IDM
% Uncertainty for HDV behavior
acel_noise = 0.1; % A white noise signal on HDV's original acceleration
% Data set
data_str = '1'; % 1. random ovm 2. manual ovm 3. homogeneous ovm
% Parameters in Simulation
total_time = 40; % Total Simulation Time
Tstep = 0.05; % Time Step
total_time_step = total_time/Tstep;
% DeeP-LCC Formulation
T = 1200; % length of data samples
% T = 300; % Second choise
Tini = 20; % length of past data
N = 50; % length of predicted horizon
weight_v = 1; % weight coefficient for velocity error
weight_s = 0.5; % weight coefficient for spacing error
weight_u = 0.1; % weight coefficient for control input
lambda_g = 10; % penalty on ||g||_2^2 in objective
lambda_y = 1e4; % penalty on ||sigma_y||_2^2 in objective
% ------------------------------------------
% Parameters in Mixed Traffic
% ------------------------------------------
ID = [1,0,0,1,0,0,1,0,0,1,0,0,1,0,0]; % ID of vehicle types
% 1: CAV 0: HDV
ID_str = num2str(ID);
ID_str(find(ID_str==' ')) = '';
pos_cav = find(ID==1); % position of CAVs
n_vehicle = length(ID); % number of vehicles
n_cav = length(pos_cav); % number of CAVs
n_hdv = n_vehicle-n_cav; % number of HDVs
mix = 1; % whether mixed traffic flow
v_star = 15; % Equilibrium velocity
s_star = 20; % Equilibrium spacing for CAV
if data_str == '1'
% Random setup for OVM
load(['_data/hdv_ovm_random_',ID_str,'.mat']);
elseif data_str == '3'
% Homegeneous setup for OVM
load(['_data/hdv_ovm_homogeneous_',ID_str,'.mat']);
end
acel_max = 2;
dcel_max = -5;
% What is measurable
% for measure_type = 2:3
measure_type = 3;
% 1. Only the velocity errors of all the vehicles are measurable;
% 2. All the states, including velocity error and spacing error are measurable;
% 3. Velocity error and spacing error of the CAVs are measurable,
% and the velocity error of the HDVs are measurable.
% ------------------
% size in DeeP-LCC
% ------------------
n_ctr = 2*n_vehicle; % number of state variables
m_ctr = n_cav; % number of input variables
switch measure_type % number of output variables
case 1
p_ctr = n_vehicle;
case 2
p_ctr = 2*n_vehicle;
case 3
p_ctr = n_vehicle + n_cav;
end
% ------------------
% size in Distributed DeeP-LCC
% ------------------
ni_vehicle = zeros(1,n_cav); % number of vehicles in each LCC subsystem
for i_cav = 1:n_cav-1
ni_vehicle(i_cav) = pos_cav(i_cav+1) - pos_cav(i_cav);
end
ni_vehicle(n_cav) = n_vehicle - pos_cav(end) + 1;
% -------------------------------------------------------------------------
% Scenario initialization
%--------------------------------------------------------------------------
% There is one head vehicle at the very beginning
S = zeros(total_time_step,n_vehicle+1,3);
S(1,1,1) = 0;
for i = 2 : n_vehicle+1
S(1,i,1) = S(1,i-1,1) - hdv_parameter.s_star(i-1);
end
S(1,:,2) = v_star * ones(n_vehicle+1,1);
% -------------------------------------------------------------------------
% Data collection
%--------------------------------------------------------------------------
% ------------------
% persistently exciting input data
% ------------------
ud = -1+2*rand(m_ctr,T);
ed = -1+2*rand(1,T);
yd = zeros(p_ctr,T);
% ------------------
% generate output data
% ------------------
for k = 1:T-1
% Update acceleration
acel = HDV_dynamics(S(k,:,:),hdv_parameter) ...
-acel_noise + 2*acel_noise*rand(n_vehicle,1);
S(k,1,3) = 0; % the head vehicle
S(k,2:end,3) = acel; % all the vehicles using HDV model
S(k,pos_cav+1,3) = ud(:,k); % the CAVs
S(k+1,:,2) = S(k,:,2) + Tstep*S(k,:,3);
S(k+1,1,2) = ed(k) + v_star; % the velocity of the head vehicle
S(k+1,:,1) = S(k,:,1) + Tstep*S(k,:,2);
yd(:,k) = measure_mixed_traffic(S(k,2:end,2),S(k,:,1),ID,v_star,s_star,measure_type);
end
k = k+1;
yd(:,k) = measure_mixed_traffic(S(k,2:end,2),S(k,:,1),ID,v_star,s_star,measure_type);
% ------------------
% construct distributed data
% ------------------
for i=1:n_cav
ui_d{i} = ud(i,:);
yi_d{i} = zeros(ni_vehicle(i)+1,T);
if i~= n_cav
yi_d{i}(1:end-1,:) = yd(pos_cav(i):pos_cav(i+1)-1,:);
else
yi_d{i}(1:end-1,:) = yd(pos_cav(i):n_vehicle,:);
end
yi_d{i}(end,:) = yd(n_vehicle+i,:);
if i==1
ei_d{i} = ed;
else
ei_d{i} = yd(pos_cav(i)-1,:);
end
end
% ------------------
% organize past data and future data
% ------------------
U = hankel_matrix(ud,Tini+N);
Up = U(1:Tini*m_ctr,:);
Uf = U((Tini*m_ctr+1):end,:);
E = hankel_matrix(ed,Tini+N);
Ep = E(1:Tini,:);
Ef = E((Tini+1):end,:);
Y = hankel_matrix(yd,Tini+N);
Yp = Y(1:Tini*p_ctr,:);
Yf = Y((Tini*p_ctr+1):end,:);
for i=1:n_cav
Ui{i} = hankel_matrix(ui_d{i},Tini+N);
Uip{i} = Ui{i}(1:Tini,:);
Uif{i} = Ui{i}(Tini+1:end,:);
Ei{i} = hankel_matrix(ei_d{i},Tini+N);
Eip{i} = Ei{i}(1:Tini,:);
Eif{i} = Ei{i}(Tini+1:end,:);
Yi{i} = hankel_matrix(yi_d{i},Tini+N);
Yip{i} = Yi{i}(1:Tini*(ni_vehicle(i)+1),:);
Yif{i} = Yi{i}(Tini*(ni_vehicle(i)+1)+1:end,:);
end
str=['Processing...',num2str(i_data/data_total_number*100),'%'];
waitbar(i_data/data_total_number,h_wait,str);
save(['_data\trajectory_data_collection\',ID_str,'_data',num2str(data_str),'_',num2str(i_data),...
'_T_',num2str(T),'_',num2str(Tini),'_',num2str(N),...
'_noiseLevel_',num2str(acel_noise),'.mat'],...
'hdv_type','acel_noise','Up','Yp','Uf','Yf','Ep','Ef','T','Tini','N','ID','Tstep','v_star','Uip','Uif','Eip','Eif','Yip','Yif');
end
close(h_wait);