-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil.go
194 lines (178 loc) · 4.91 KB
/
util.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
package openjpeg_go
import (
"image"
"image/color"
"image/draw"
"math/rand"
)
// Create a new Image of specified color model.
func NewImage(c color.Model, r image.Rectangle) image.Image {
switch c {
case color.RGBAModel:
return image.NewRGBA(r)
case color.RGBA64Model:
return image.NewRGBA64(r)
case color.NRGBAModel:
return image.NewNRGBA(r)
case color.NRGBA64Model:
return image.NewNRGBA64(r)
case color.GrayModel:
return image.NewGray(r)
case color.Gray16Model:
return image.NewGray16(r)
case color.CMYKModel:
return image.NewCMYK(r)
case color.AlphaModel:
return image.NewAlpha(r)
case color.Alpha16Model:
return image.NewAlpha16(r)
}
return nil
}
func NewImageSSR(c color.Model, ssr image.YCbCrSubsampleRatio, r image.Rectangle) image.Image {
if c == color.YCbCrModel {
return image.NewYCbCr(r, ssr)
}
return NewImage(c, r)
}
// Create a new image "in the image" of template, that is, of same color model.
func NewImageColorAs(template image.Image, r image.Rectangle) {
NewImageSSR(template.ColorModel(), GetSSR(template, image.YCbCrSubsampleRatio444), r)
}
// Get sub-sampling ratio if color space has one (0 = no sub-sampling).
func GetSSR(r image.Image, alt image.YCbCrSubsampleRatio) image.YCbCrSubsampleRatio {
yuv := r.(*image.YCbCr)
if yuv != nil {
return yuv.SubsampleRatio
}
return alt
}
func GetPixStride(i image.Image) ([]byte, int) {
switch i.(type) {
case *image.RGBA:
return i.(*image.RGBA).Pix, i.(*image.RGBA).Stride
case *image.RGBA64:
return i.(*image.RGBA64).Pix, i.(*image.RGBA64).Stride
case *image.NRGBA:
return i.(*image.NRGBA).Pix, i.(*image.NRGBA).Stride
case *image.NRGBA64:
return i.(*image.NRGBA64).Pix, i.(*image.NRGBA64).Stride
case *image.Gray:
return i.(*image.Gray).Pix, i.(*image.Gray).Stride
case *image.Gray16:
return i.(*image.Gray16).Pix, i.(*image.Gray16).Stride
case *image.CMYK:
return i.(*image.CMYK).Pix, i.(*image.CMYK).Stride
case *image.Alpha:
return i.(*image.Alpha).Pix, i.(*image.Alpha).Stride
case *image.Alpha16:
return i.(*image.Alpha16).Pix, i.(*image.Alpha16).Stride
}
return nil, -1
}
type SubImage interface {
SubImage(r image.Rectangle) image.Image
}
func Crop(i image.Image, rectangle *image.Rectangle) image.Image {
cr := i.(SubImage)
if cr == nil {
return nil
}
return cr.SubImage(*rectangle)
}
// Indices match the enum. Format is vertical * 16 + horizontal.
var yvh = [6]byte{0x11, 0x12, 0x22, 0x21, 0x14, 0x24}
const YCbCrSubsampleRatioUnknown = -1
// Translate vertical-horizontal chroma divisors to Go's sub-sampling rate.
func VHDiv2SSR(v, h int) image.YCbCrSubsampleRatio {
b := byte((v << 4) | h)
for i := 0; i < len(yvh); i++ {
if yvh[i] == b {
return image.YCbCrSubsampleRatio(i)
}
}
return YCbCrSubsampleRatioUnknown
}
// Translate Go's sub-sampling rate to V/H divisors.
func SSR2VHDiv(i image.YCbCrSubsampleRatio) (v, h int) {
return int(yvh[i] >> 4), int(yvh[i] & 15)
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
func IsGray(img image.Image, fuzz int) bool {
if _, ok := img.(*image.Gray); ok {
return true
}
if fuzz == -1 || fuzz > 255 {
return true
}
// Otherwise sample few pixels and check if they're gray
for i := 0; i < 256; i++ {
r, g, b, _ := img.At(rand.Intn(img.Bounds().Dx()), rand.Intn(img.Bounds().Dy())).RGBA()
rg := abs(int(r - g))
rb := abs(int(r - b))
if abs(rg-rb) > fuzz {
return false
}
}
return true
}
// Attempt conversion of the input image into greyscale. Fuzz is
// is a threshold when a color picture is considered greyscale,
// Higher fuzz will accept more of color variance.
// If picture is above fuzz, "too colorish", nil is returned.
// If fuzz threshold is -1, the conversion is done always.
func ToGray(img image.Image, fuzz int) (gr *image.Gray) {
// Already greyscale, no need to convert.
if im, ok := img.(*image.Gray); ok {
return im
}
if !IsGray(img, fuzz) {
return nil
}
// Fastest: For YUV image, we can just take the Y component
if yuv, ok := img.(*image.YCbCr); ok {
return &image.Gray{
Rect: yuv.Rect,
Pix: yuv.Y,
Stride: yuv.YStride,
}
}
// Fast: RGB, bias-average
var pix []byte
var stride int
if rgba, ok := img.(*image.RGBA); ok {
pix, stride = rgba.Pix, rgba.Stride
} else if nrgba, ok := img.(*image.NRGBA); ok {
pix, stride = nrgba.Pix, nrgba.Stride
}
if pix != nil {
opix := make([]byte, len(pix)/4)
gr = &image.Gray{
Pix: opix,
Stride: stride / 4,
Rect: img.Bounds(),
}
for i, j := 0, 0; i < len(opix); i++ {
pp := pix[j:][:4]
opix[i] = byte((uint32(pp[0])*19595 + uint32(pp[1])*38470 + uint32(pp[2])*7471 + 32768) >> 16)
j += 4
}
return
}
// Slow: use draw
return ToModel(img, color.GrayModel).(*image.Gray)
}
func ToModel(img image.Image, c color.Model) (gr image.Image) {
if img.ColorModel() == c {
return img
}
b := img.Bounds()
gr = NewImage(c, image.Rect(0, 0, b.Dx(), b.Dy()))
draw.Draw(gr.(draw.Image), gr.Bounds(), img, b.Min, draw.Src)
return
}