-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdemo_cli.py
330 lines (274 loc) · 14.3 KB
/
demo_cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import argparse
from ctypes import alignment
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
from pathlib import Path
import spacy
import time
if __name__ == '__main__':
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--run_id", type=str, default="default", help= \
"Name for this model. By default, training outputs will be stored to saved_models/<run_id>/. If a model state "
"from the same run ID was previously saved, the training will restart from there. Pass -f to overwrite saved "
"states and restart from scratch.")
parser.add_argument("-m", "--models_dir", type=Path, default="saved_models",
help="Directory containing all saved models")
parser.add_argument("--weight", type=float, default=1,
help="weight of input audio for voice filter")
parser.add_argument("--griffin_lim",
action="store_true",
help="if True, use griffin-lim, else use vocoder")
parser.add_argument("--cpu", action="store_true", help=\
"If True, processing is done on CPU, even when a GPU is available.")
parser.add_argument("--no_sound", action="store_true", help=\
"If True, audio won't be played.")
parser.add_argument("--seed", type=int, default=None, help=\
"Optional random number seed value to make toolbox deterministic.")
args = parser.parse_args()
arg_dict = vars(args)
# print_args(args, parser)
# Hide GPUs from Pytorch to force CPU processing
if arg_dict.pop("cpu"):
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
print("Running a test of your configuration...\n")
import numpy as np
import soundfile as sf
import torch
import encoder.inference
import encoder.params_data
from synthesizer.inference import Synthesizer_infer
from synthesizer.utils.cleaners import add_breaks, english_cleaners_predict
from vocoder import inference as vocoder
from vocoder.display import save_attention_multiple, save_spectrogram, save_stop_tokens
from utils.argutils import print_args
from utils.default_models import ensure_default_models
from speed_changer.fixSpeed import *
if torch.cuda.is_available():
device_id = torch.cuda.current_device()
gpu_properties = torch.cuda.get_device_properties(device_id)
## Print some environment information (for debugging purposes)
print("Found %d GPUs available. Using GPU %d (%s) of compute capability %d.%d with "
"%.1fGb total memory.\n" %
(torch.cuda.device_count(),
device_id,
gpu_properties.name,
gpu_properties.major,
gpu_properties.minor,
gpu_properties.total_memory / 1e9))
else:
print("Using CPU for inference.\n")
## Load the models one by one.
if not args.griffin_lim:
print("Preparing the encoder, the synthesizer and the vocoder...")
else:
print("Preparing the encoder and the synthesizer...")
ensure_default_models(args.run_id, Path("saved_models"))
encoder.inference.load_model(list(args.models_dir.glob(f"{args.run_id}/encoder.pt"))[0])
synthesizer = Synthesizer_infer(list(args.models_dir.glob(f"{args.run_id}/synthesizer.pt"))[0])
if not args.griffin_lim:
vocoder.load_model(list(args.models_dir.glob(f"{args.run_id}/vocoder.pt"))[0])
# ## Run a test
# print("Testing your configuration with small inputs.")
# # Forward an audio waveform of zeroes that lasts 1 second. Notice how we can get the encoder's
# # sampling rate, which may differ.
# # If you're unfamiliar with digital audio, know that it is encoded as an array of floats
# # (or sometimes integers, but mostly floats in this projects) ranging from -1 to 1.
# # The sampling rate is the number of values (samples) recorded per second, it is set to
# # 16000 for the encoder. Creating an array of length <sampling_rate> will always correspond
# # to an audio of 1 second.
# print("\tTesting the encoder...")
# encoder.embed_utterance(np.zeros(encoder.sampling_rate))
# # Create a dummy embedding. You would normally use the embedding that encoder.embed_utterance
# # returns, but here we're going to make one ourselves just for the sake of showing that it's
# # possible.
# embed = np.random.rand(speaker_embedding_size)
# # Embeddings are L2-normalized (this isn't important here, but if you want to make your own
# # embeddings it will be).
# embed /= np.linalg.norm(embed)
# # The synthesizer can handle multiple inputs with batching. Let's create another embedding to
# # illustrate that
# embeds = [embed, np.zeros(speaker_embedding_size)]
# texts = ["test 1", "test 2"]
# print("\tTesting the synthesizer... (loading the model will output a lot of text)")
# mels = synthesizer.synthesize_spectrograms(texts, embeds)
# # The vocoder synthesizes one waveform at a time, but it's more efficient for long ones. We
# # can concatenate the mel spectrograms to a single one.
# mel = np.concatenate(mels, axis=1)
# # The vocoder can take a callback function to display the generation. More on that later. For
# # now we'll simply hide it like this:
# if not args.griffin_lim:
# no_action = lambda *args: None
# print("\tTesting the vocoder...")
# # For the sake of making this test short, we'll pass a short target length. The target length
# # is the length of the wav segments that are processed in parallel. E.g. for audio sampled
# # at 16000 Hertz, a target length of 8000 means that the target audio will be cut in chunks of
# # 0.5 seconds which will all be generated together. The parameters here are absurdly short, and
# # that has a detrimental effect on the quality of the audio. The default parameters are
# # recommended in general.
# vocoder.infer_waveform(mel, target=200, overlap=50, progress_callback=no_action)
# print("All test passed! You can now synthesize speech.\n\n")
## Interactive speech generation
print("This is a GUI-less example of interface to SV2TTS. The purpose of this script is to "
"show how you can interface this project easily with your own. See the source code for "
"an explanation of what is happening.\n")
print("Interactive generation loop")
num_generated = 0
nlp = spacy.load('en_core_web_sm')
weight = arg_dict["weight"] # 声音美颜的用户语音权重
amp = 1
while True:
# try:
# Get the reference audio filepath
num_of_input_audio = 1
for i in range(num_of_input_audio):
# Computing the embedding
# First, we load the wav using the function that the speaker encoder provides. This is
# important: there is preprocessing that must be applied.
# The following two methods are equivalent:
# - Directly load from the filepath:
# preprocessed_wav = encoder.preprocess_wav(in_fpath)
# - If the wav is already loaded:
# get duration info from input audio
message2 = "Reference voice: enter an audio folder of a voice to be cloned (mp3, " \
f"wav, m4a, flac, ...):({i+1}/{num_of_input_audio})\n"
in_fpath = Path(input(message2).replace("\"", "").replace("\'", ""))
fpath_without_ext = os.path.splitext(str(in_fpath))[0]
speaker_name = os.path.normpath(fpath_without_ext).split(os.sep)[-1]
is_wav_file, single_wav, wav_path = TransFormat(in_fpath, 'wav')
if not is_wav_file:
os.remove(wav_path) # remove intermediate wav files
# merge
if i == 0:
wav = single_wav
else:
wav = np.append(wav, single_wav)
# write to disk
path_ori, _ = os.path.split(wav_path)
file_ori = 'temp.wav'
fpath = os.path.join(path_ori, file_ori)
sf.write(fpath, wav, samplerate=encoder.params_data.sampling_rate)
# adjust the speed
totDur_ori, nPause_ori, arDur_ori, nSyl_ori, arRate_ori = AudioAnalysis(path_ori, file_ori)
DelFile(path_ori, '.TextGrid')
os.remove(fpath)
preprocessed_wav = encoder.inference.preprocess_wav(wav)
print("Loaded input audio file succesfully")
# Then we derive the embedding. There are many functions and parameters that the
# speaker encoder interfaces. These are mostly for in-depth research. You will typically
# only use this function (with its default parameters):
input_embed = encoder.inference.embed_utterance(preprocessed_wav)
# Choose standard audio
fft_max_freq = vocoder.get_dominant_freq(preprocessed_wav)
print(f"\nthe dominant frequency of input audio is {fft_max_freq}Hz")
if fft_max_freq < encoder.params_data.split_freq:
vocoder.hp.sex = 1
standard_fpath = "standard_audios/male_1.wav"
else:
vocoder.hp.sex = 0
standard_fpath = "standard_audios/female_1.wav"
if os.path.exists(standard_fpath):
standard_wav = Synthesizer_infer.load_preprocess_wav(standard_fpath)
preprocessed_standard_wav = encoder.inference.preprocess_wav(standard_wav)
print("Loaded standard audio file successfully")
standard_embed = encoder.inference.embed_utterance(preprocessed_standard_wav)
embed1=np.copy(input_embed).dot(weight)
embed2=np.copy(standard_embed).dot(1 - weight)
embed=embed1+embed2
else:
embed = np.copy(input_embed)
embed[embed < encoder.params_data.set_zero_thres]=0 # 噪声值置零
embed = embed * amp
start_syn = time.time()
# Generating the spectrogram
text = input("Write a sentence to be synthesized:\n")
# If seed is specified, reset torch seed and force synthesizer reload
if args.seed is not None:
torch.manual_seed(args.seed)
synthesizer = Synthesizer_infer(args.syn_model_fpath)
# The synthesizer works in batch, so you need to put your data in a list or numpy array
def preprocess_text(text):
text = add_breaks(text)
text = english_cleaners_predict(text)
texts = [i.text.strip() for i in nlp(text).sents] # split paragraph to sentences
return texts
texts = preprocess_text(text)
print(f"the list of inputs texts:\n{texts}")
# embeds = [embed] * len(texts)
specs = []
alignments = []
stop_tokens = []
for text in texts:
spec, align, stop_token = synthesizer.synthesize_spectrograms([text], [embed], require_visualization=True)
specs.append(spec[0])
alignments.append(align[0])
stop_tokens.append(stop_token[0])
breaks = [spec.shape[1] for spec in specs]
spec = np.concatenate(specs, axis=1)
## Save synthesizer visualization results
if not os.path.exists("syn_results"):
os.mkdir("syn_results")
save_attention_multiple(alignments, "syn_results/attention")
save_stop_tokens(stop_tokens, "syn_results/stop_tokens")
save_spectrogram(spec, "syn_results/mel")
print("Created the mel spectrogram")
end_syn = time.time()
print(f"Prediction time of synthesizer is {end_syn - start_syn}s")
start_voc = time.time()
## Generating the waveform
print("Synthesizing the waveform:")
# If seed is specified, reset torch seed and reload vocoder
if args.seed is not None:
torch.manual_seed(args.seed)
vocoder.load_model(args.voc_model_fpath)
# Synthesizing the waveform is fairly straightforward. Remember that the longer the
# spectrogram, the more time-efficient the vocoder.
if not args.griffin_lim:
wav = vocoder.infer_waveform(spec, target=vocoder.hp.voc_target, overlap=vocoder.hp.voc_overlap, crossfade=vocoder.hp.is_crossfade)
else:
wav = Synthesizer_infer.griffin_lim(spec)
end_voc = time.time()
print(f"Prediction time of vocoder is {end_voc - start_voc}s")
print(f"Prediction time of TTS is {end_voc - start_syn}s")
# Add breaks
b_ends = np.cumsum(np.array(breaks) * Synthesizer_infer.hparams.hop_size)
b_starts = np.concatenate(([0], b_ends[:-1]))
wavs = [wav[start:end] for start, end, in zip(b_starts, b_ends)]
breaks = [np.zeros(int(0.15 * Synthesizer_infer.sample_rate))] * len(breaks)
wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)])
# Trim excess silences to compensate for gaps in spectrograms (issue #53)
# generated_wav = encoder.inference.preprocess_wav(wav)
wav = wav / np.abs(wav).max() * 4
# Save it on the disk
# filename = "demo_output_%02d.wav" % num_generated
if not os.path.exists("out_audios"):
os.mkdir("out_audios")
dir_path = os.path.dirname(os.path.realpath(__file__)) # current dir
filename = os.path.join(dir_path, f"out_audios/{speaker_name}_syn.wav")
# print(wav.dtype)
sf.write(filename, wav.astype(np.float32), synthesizer.sample_rate)
num_generated += 1
print("\nSaved output (havent't change speed) as %s\n\n" % filename)
# Fix Speed(generate new audio)
fix_file = work(totDur_ori,
nPause_ori,
arDur_ori,
nSyl_ori,
arRate_ori,
filename)
print(f"\nSaved output (fixed speed) as {fix_file}\n\n")
# # Play the audio (non-blocking)
# if not args.no_sound:
# import sounddevice as sd
# try:
# sd.stop()
# sd.play(wav, synthesizer.sample_rate)
# except sd.PortAudioError as e:
# print("\nCaught exception: %s" % repr(e))
# print("Continuing without audio playback. Suppress this message with the \"--no_sound\" flag.\n")
# except:
# raise
# except Exception as e:
# print("Caught exception: %s" % repr(e))
# print("Restarting\n")