-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetermine_orientation.py
105 lines (95 loc) · 3.54 KB
/
determine_orientation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#!/usr/bin/env python
'''Determine orientation for coreshell patterns.
Usage:
determine_orientation.py -r <reference_file> <pattern_files>... [options]
Options:
-h --help Show this screen.
-r reference_file Reference profile filepath.
--apply-mask=apple_mask Whether to apply mask [default: False].
--mask=mask_file Mask file in npy format [default: None].
--output-dir=output_dir Output directory [default: output].
'''
import numpy as np
import glob
import h5py
from mpi4py import MPI
from pattern2profile import *
from scipy.stats import pearsonr
from docopt import docopt
import os
import sys
if __name__ == '__main__':
# parse command options
argv = docopt(__doc__)
reference_file = argv['-r']
apply_mask = argv['--apply-mask']
mask_file = argv['--mask']
pattern_files = argv['<pattern_files>']
output_dir = argv['--output-dir']
reference = h5py.File(reference_file, 'r')
ref_profiles = reference['profile'].value
ref_euler_angle = reference['euler_angle'].value
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
if rank == 0:
if os.path.isdir(output_dir):
pass
else:
try:
os.makedirs('%s' %output_dir)
except Exception as e:
raise e
print('Experimental data: %s' % str(pattern_files))
print('Total experiment files: %d' % len(pattern_files))
job_size = len(pattern_files) // size
jobs = []
for i in range(size):
if i == (size - 1):
job = pattern_files[i*job_size:]
else:
job = pattern_files[i*job_size:(i+1)*job_size]
jobs.append(job)
if i == 0:
continue
else:
comm.send(job, dest=i)
print('Rank 0 send job to rank %d: %s' % (i, str(job)))
job = jobs[0]
else:
job = comm.recv(source=0)
print('Rank %d receive job: %s' % (rank, str(job)))
comm.barrier()
if apply_mask == 'True':
det_mask = np.load(mask_file)
mask = make_mask(det_mask=det_mask)
else:
mask = make_mask(det_mask=None)
h5f = h5py.File('%s/orientation_%d.h5' % (output_dir, rank))
paths = []
frames = []
euler_angles = []
max_pccs = []
for i in range(len(job)):
print('===========Rank %d processing %d/%d: %s=============' % (rank, i, len(job)-1, job[i]))
data = h5py.File(job[i], 'r')['patterns']
for j in range(data.shape[0]):
pattern = data[j].T
profile = pattern2profile(pattern, mask, binsize=1.8)
# find the max pcc
a = profile
b = ref_profiles
N_ref = ref_profiles.shape[0]
pccs = ((a-a.mean())*(b-b.mean(axis=1).reshape((N_ref,1)))).sum(axis=1)/np.sqrt(((a-a.mean())**2).sum()*((b-b.mean(axis=1).reshape((N_ref,1)))**2).sum(axis=1))
max_id = np.argmax(pccs)
max_pcc = pccs[max_id]
euler_angle = ref_euler_angle[max_id]
print('Rank %d, %s, frame %d/%d, euler angle: %s, pcc: %.3f' % (rank, job[i], j, data.shape[0], euler_angle, max_pcc))
paths.append(job[i])
frames.append(j)
euler_angles.append(euler_angle)
max_pccs.append(max_pcc)
h5f.create_dataset('paths', data=paths)
h5f.create_dataset('frames', data=frames)
h5f.create_dataset('euler_angles', data=euler_angles)
h5f.create_dataset('max_pccs', data=max_pccs)