-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathpred_pseudo.py
150 lines (125 loc) · 6.5 KB
/
pred_pseudo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import os
import argparse
import time
from monai.losses import DiceCELoss
from monai.data import load_decathlon_datalist, decollate_batch
from monai.transforms import AsDiscrete
from monai.metrics import DiceMetric
from monai.inferers import sliding_window_inference
from model.Universal_model import Universal_model
from dataset.dataloader import get_loader_without_gt
from utils import loss
from utils.utils import dice_score, threshold_organ, visualize_label, merge_label, get_key
from utils.utils import TEMPLATE, ORGAN_NAME, NUM_CLASS
from utils.utils import organ_post_process, threshold_organ, save_results
torch.multiprocessing.set_sharing_strategy('file_system')
def validation(model, ValLoader, val_transforms, args):
if not os.path.exists(args.result_save_path):
os.makedirs(args.result_save_path)
model.eval()
for index, batch in enumerate(tqdm(ValLoader)):
image, name = batch["image"].cuda(), batch["name"]
with torch.no_grad():
pred = sliding_window_inference(image, (args.roi_x, args.roi_y, args.roi_z), 1, model, overlap=0.5, mode='gaussian')
pred_sigmoid = F.sigmoid(pred)
pred_hard = threshold_organ(pred_sigmoid)
pred_hard = pred_hard.cpu()
torch.cuda.empty_cache()
# use organ_list to indicate the saved organ
organ_list = [i for i in range(1,33)]
# organ_list = [26, 32]
# if 'liver' in name[0]:
# organ_list = [6, 27]
# elif 'kidney' in name[0]:
# organ_list = [2, 3, 26]
# elif 'hepaticvessel' in name[0]:
# organ_list = [15, 29]
# elif 'pancreas' in name[0]:
# organ_list = [11, 28]
# elif 'colon' in name[0]:
# organ_list = [31]
# elif 'lung' in name[0]:
# organ_list = [30]
# elif 'spleen' in name[0]:
# organ_list = [1]
pred_hard_post = organ_post_process(pred_hard.numpy(), organ_list, args.log_name+'/'+name[0].split('/')[0]+'/'+name[0].split('/')[-1],args)
pred_hard_post = torch.tensor(pred_hard_post)
batch['results'] = pred_hard_post
save_results(batch, args.result_save_path, val_transforms, organ_list)
torch.cuda.empty_cache()
def main():
parser = argparse.ArgumentParser()
## for distributed training
parser.add_argument('--dist', dest='dist', type=bool, default=False,
help='distributed training or not')
parser.add_argument("--local_rank", type=int)
parser.add_argument("--device")
parser.add_argument("--epoch", default=0)
## logging
parser.add_argument('--log_name', default='Nvidia', help='The path resume from checkpoint')
## model load
parser.add_argument('--resume', default='./pretrained_weights/swinunetr.pth', help='The path resume from checkpoint')
parser.add_argument('--backbone', default='swinunetr', help='backbone [swinunetr or unet]')
## hyperparameter
parser.add_argument('--max_epoch', default=1000, type=int, help='Number of training epoches')
parser.add_argument('--store_num', default=10, type=int, help='Store model how often')
parser.add_argument('--lr', default=1e-4, type=float, help='Learning rate')
parser.add_argument('--weight_decay', default=1e-5, type=float, help='Weight Decay')
## dataset
parser.add_argument('--data_root_path', default=None, help='data root path')
parser.add_argument('--result_save_path', default=None, help='path for save result')
parser.add_argument('--batch_size', default=1, type=int, help='batch size')
parser.add_argument('--num_workers', default=8, type=int, help='workers numebr for DataLoader')
parser.add_argument('--a_min', default=-175, type=float, help='a_min in ScaleIntensityRanged')
parser.add_argument('--a_max', default=250, type=float, help='a_max in ScaleIntensityRanged')
parser.add_argument('--b_min', default=0.0, type=float, help='b_min in ScaleIntensityRanged')
parser.add_argument('--b_max', default=1.0, type=float, help='b_max in ScaleIntensityRanged')
parser.add_argument('--space_x', default=1.5, type= float, help='spacing in x direction')
parser.add_argument('--space_y', default=1.5, type=float, help='spacing in y direction')
parser.add_argument('--space_z', default=1.5, type=float, help='spacing in z direction')
parser.add_argument('--roi_x', default=96, type=int, help='roi size in x direction')
parser.add_argument('--roi_y', default=96, type=int, help='roi size in y direction')
parser.add_argument('--roi_z', default=96, type=int, help='roi size in z direction')
parser.add_argument('--num_samples', default=1, type=int, help='sample number in each ct')
parser.add_argument('--phase', default='test', help='train or validation or test')
parser.add_argument('--cache_dataset', action="store_true", default=False, help='whether use cache dataset')
parser.add_argument('--store_result', action="store_true", default=False, help='whether save prediction result')
parser.add_argument('--cache_rate', default=0.6, type=float, help='The percentage of cached data in total')
parser.add_argument('--threshold_organ', default='Pancreas Tumor')
parser.add_argument('--threshold', default=0.6, type=float)
args = parser.parse_args()
# prepare the 3D model
model = Universal_model(img_size=(args.roi_x, args.roi_y, args.roi_z),
in_channels=1,
out_channels=NUM_CLASS,
backbone=args.backbone,
encoding='word_embedding'
)
#Load pre-trained weights
store_dict = model.state_dict()
checkpoint = torch.load(args.resume)
load_dict = checkpoint['net']
# args.epoch = checkpoint['epoch']
num_count = 0
for key, value in load_dict.items():
if 'swinViT' in key or 'encoder' in key or 'decoder' in key:
name = '.'.join(key.split('.')[1:])
name = 'backbone.' + name
else:
name = '.'.join(key.split('.')[1:])
store_dict[name] = value
num_count += 1
model.load_state_dict(store_dict)
print('Use pretrained weights. load', num_count, 'params into', len(store_dict.keys()))
model.cuda()
torch.backends.cudnn.benchmark = True
test_loader, val_transforms = get_loader_without_gt(args)
validation(model, test_loader, val_transforms, args)
if __name__ == "__main__":
main()