-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
850 lines (611 loc) · 25.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
#!/usr/bin/env python
# coding: utf-8
# ### Import
# In[1]:
import os
import time
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import numba as nb
import random
import math
import json
import functools
from dataclasses import dataclass, asdict
from collections import namedtuple
import pyteomics
from pyteomics import mgf, mass
# In[2]:
import tensorflow as tf
print(tf.__version__)
import tensorflow.keras as keras
import tensorflow.keras as k
from tensorflow.keras import backend as K
import tensorflow.experimental.numpy as tnp
from tensorflow.keras.layers import Layer, InputSpec
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, LearningRateScheduler, TensorBoard
from tensorflow.keras.layers import Conv1D, MaxPooling1D, Dense, Add, Flatten, Activation, BatchNormalization
from tensorflow.keras.layers import LayerNormalization
from tensorflow.keras import Model, Input
from tensorflow.keras.losses import categorical_crossentropy, binary_crossentropy, MSE, MAE, cosine_similarity
from tensorflow.keras.losses import sparse_categorical_crossentropy
import tensorflow_addons as tfa
from tensorflow_addons.layers import InstanceNormalization
from tensorflow_addons.optimizers import RectifiedAdam as radam
# ### Help functions
# In[3]:
def asnp(x): return np.asarray(x)
def asnp32(x): return np.asarray(x, dtype='float32')
def np32(x): return np.array(x, dtype='float32')
def zero32(shape): return np.zeros(shape, dtype='float32')
def clipn(*kw, sigma=4):
return np.clip(np.random.randn(*kw), -sigma, sigma) / sigma
class config(dict):
def __init__(self, *args, **kwargs):
super(config, self).__init__(*args, **kwargs)
self.__dict__ = self
class data_seq(k.utils.Sequence):
def __init__(self, sps, processor, batch_size, shuffle=1, xonly=1, **kws):
self.sps = sps
self.processor = processor
self.batch_size = batch_size
self.shuffle = shuffle
self.xonly = xonly
self.kws = kws
def on_epoch_begin(self, ep):
if ep > 0 and self.shuffle:
np.random.shuffle(self.sps)
def __len__(self):
return math.ceil(len(self.sps) / self.batch_size)
def __getitem__(self, idx):
start_idx = idx * self.batch_size
end_idx = min(start_idx + self.batch_size, len(self.sps))
if self.xonly:
return (self.processor(self.sps[start_idx: end_idx], **self.kws), )
else:
return self.processor(self.sps[start_idx: end_idx], **self.kws)
def fastmass(pep, ion_type, charge, nmod=None, mod=None, cam=True):
base = mass.fast_mass(pep, ion_type=ion_type, charge=charge)
if cam: base += 57.021 * pep.count('C') / charge # fixed C modification
return base
def m1(pep, c=1, **kws): return fastmass(pep, ion_type='M', charge=c, **kws)
def ppm(m1, m2):
return ((m1 - m2) / m1) * 1000000
def ppmdiff(sp, pep=None):
if pep is None: pep = sp['pep']
mass = fastmass(pep, 'M', sp['charge'], mod=sp['mod'], nmod=sp['nmod'])
return ((sp['mass'] - mass) / mass) * 1000000
# #### flat and vectorlize
# In[8]:
@nb.njit
def normalize(it, mode):
if mode == 0:
return it
elif mode == 2: return np.sqrt(it)
elif mode == 3: return np.sqrt(np.sqrt(it))
elif mode == 4: return np.sqrt(np.sqrt(np.sqrt(it)))
return it
@nb.njit
def remove_precursor(v, pre_mz, c, precision, low, r):
for delta in (0, 1, 2):
mz = pre_mz + delta / c
if mz > 0 and mz >= low:
pc = round((mz - low) / precision)
if pc - r < len(v): v[max(0, pc - r): min(len(v), pc + r)] = 0
return None # force inline
def kth(v, k):
return np.partition(v, k)[k]
# In[10]:
@nb.njit
def mz2pos(mzs, pre, low): return round(mzs / pre + low)
@nb.njit
def flat(v, mz, it, pre, low, use_max):
for i, x in enumerate(mz):
pos = int(round((x - low) / pre))
if pos < 0 or pos >= len(v): continue
if use_max:
v[pos] = max(v[pos], it[i])
else:
v[pos] += it[i]
return v
# In[11]:
@nb.njit
def native_vectorlize(mz, it, mass, c, precision, dim, low, mode, v, kth, th, de, dn, use_max):
it /= np.max(it)
if dn > 0: it[it < dn] = 0
it = normalize(it, mode) # pre-scale
# if kth > 0: it = filterPeaks(it, _max_peaks=kth)
flat(v, mz, it, precision, low, use_max)
if de == 1: remove_precursor(v, mass, c, precision, low, r=1) #inplace, before scale
v /= np.max(v) # final scale, de can change max
return v
def vectorlize(mz, it, mass, c, precision, dim, low, mode, out=None, kth=-1, th=-1, de=1, dn=-1, use_max=0):
if out is None: out = np.zeros(dim, dtype='float32')
return native_vectorlize(asnp32(mz), np32(it), mass, c, precision, dim, low, mode, out, kth, th, de, dn, use_max)
# #### Process
# In[12]:
mono = {"G": 57.021464, "A": 71.037114, "S": 87.032029, "P": 97.052764, "V": 99.068414, "T": 101.04768,
"C": 160.03019, "L": 113.08406, "I": 113.08406, "D": 115.02694, "Q": 128.05858, "K": 128.09496,
"E": 129.04259, "M": 131.04048, "m": 147.0354, "H": 137.05891, "F": 147.06441, "R": 156.10111,
"Y": 163.06333, "N": 114.04293, "W": 186.07931, "O": 147.03538, "Z": 147.0354, # oxidaed M
}
mono = {k: v for k, v in sorted(mono.items(), key=lambda item: item[1])}
Alist = list('ACDEFGHIKLMNPQRSTVWYZ')
clist = ['*'] + Alist + [']', '[']
oh_dim = len(clist)
charMap = {aa: i for i, aa in enumerate(clist)}
idmap = {i: aa for i, aa in enumerate(clist)}
mlist = asnp32([0] + [mono[a] for a in Alist] + [0, 0])
# In[13]:
@nb.njit
def AA_pairs_native(seq, v):
for i in range(len(seq) - 1):
v[(seq[i] - 1) * 20 + seq[i + 1] - 1] = 1
return v
def AA_pairs(seq, out=None):
if out is None: out = np.zeros(400, dtype='float32')
return AA_pairs_native(seq, out)
def compose(pep):
cl = np.zeros(len(Alist), dtype='int32')
for i, A in enumerate(Alist): cl[i] = pep.count(A)
return cl
@nb.njit
def n_encode(seq, length, em):
for i, aa in enumerate(seq):
em[i][aa] = 1
em[len(seq)][-1] = 1 # end char, no smooth
em[len(seq) + 1:, 0] = 1 # padding, end + 1 to button
return em
def encode(seq, length=-1, out=None):
if length <= 0: length = len(seq)
out = np.zeros((length, oh_dim), dtype='float32') if out is None else out
return n_encode(seq, length, out)
def toseq(pep):
return np.int32([charMap[c] for c in pep.upper()])
# In[15]:
#### load data
def spectra_ok(sp, ppm_threshold=10):
mz, mass, pep, c = sp['mz'], sp['mass'], sp['pep'], sp['charge']
if not pep.isalpha():
return False # unknown mod
if ppm_threshold > 0 and abs(ppmdiff(sp)) > ppm_threshold:
return False
return True
def filter_spectra(db):
return [sp for sp in db if spectra_ok(sp)]
cr = {1: 1, 2: 0.9, 3: 0.85, 4: 0.8, 5: 0.75, 6: 0.75, 7: 0.75, 8: 0.75}
def convert_mgf(sps):
db = []
for sp in sps:
param = sp['params']
if not 'charge' in param: raise
c = int(str(param['charge'][0])[0])
pep = title = param['title']
if 'seq' in param: pep = param['seq']
if 'pepmass' in param: mass = param['pepmass'][0]
else: mass = float(param['parent'])
rtime = 0 if not 'RTINSECONDS' in param else float(param['RTINSECONDS'])
if 'hcd' in param:
try:
hcd = param['hcd']
if hcd[-1] == '%':
hcd = float(hcd)
elif hcd[-2:] == 'eV':
hcd = float(hcd[:-2])
hcd = hcd * 500 * cr[c] / mass
else:
raise Exception("Invalid type!")
except:
hcd = 0
else: hcd = 0
mz = sp['m/z array']
it = sp['intensity array']
db.append({'pep': pep, 'charge':c, 'mass': mass, 'mz': mz, 'it': it, 'nmod': 0,
'mod': np.zeros(len(pep), 'int32'), # currently no mod supported
'nce': hcd, 'title': title })
return db
types = {'un': 0, 'cid': 1, 'etd': 2, 'hcd': 3, 'ethcd': 4, 'etcid': 5}
def readmgf(fn, type):
file = open(fn, "r")
data = mgf.read(file, convert_arrays=1, read_charges=False, dtype='float32', use_index=False)
codes = convert_mgf(data)
for sp in codes:
sp['type'] = types[type]
return codes
def i2l(sps):
sps = [sp.copy() for sp in sps]
for sp in sps:
sp['pep'] = sp['pep'].replace('I', 'L')
return sps
# In[26]:
#### ResBlock
def norm_layer(norm):
def get_norm_layer(**kws):
if norm == 'bn':
return BatchNormalization(**kws)
if norm == 'bn0':
normalizer = BatchNormalization({"gamma_initializer" :'zeros'}, **kws)
elif norm == 'in':
return InstanceNormalization(**kws)
elif norm == 'ln':
return LayerNormalization(**kws)
elif norm is None or norm == 'none':
return lambda x: x
raise
return get_norm_layer
def layerset(c2d=0, norm=None, ghost=0):
if c2d:
return config({
'ConvLayer': k.layers.Conv2D,
'UpSamplingLayer': k.layers.UpSampling2D,
'MaxPoolingLayer': k.layers.MaxPooling2D,
'AveragePoolingLayer': k.layers.AveragePooling2D,
'GlobalPoolingLayer': k.layers.GlobalAveragePooling2D,
'GlobalMaxLayer': k.layers.GlobalMaxPooling2D,
'ZeroPadding': k.layers.ZeroPadding2D,
'c2d': c2d,
'normalizer': norm_layer(norm)
})
return config({
'ConvLayer': k.layers.Conv1D,
'UpSamplingLayer': k.layers.UpSampling1D,
'MaxPoolingLayer': k.layers.MaxPooling1D,
'AveragePoolingLayer': k.layers.AveragePooling1D,
'GlobalPoolingLayer': k.layers.GlobalAveragePooling1D,
'GlobalMaxLayer': k.layers.GlobalMaxPooling1D,
'ZeroPadding': k.layers.ZeroPadding1D,
'c2d': c2d,
'normalizer': norm_layer(norm)
})
def merge(o1, c1, c2d=0, strides=1, lset={}, norm=None, mact=None):
lset = layerset(c2d, norm, **lset)
layers = K.int_shape(c1)[-1]
if strides > 1 or K.int_shape(o1)[-1] != layers:
if strides > 1:
o1 = lset.ZeroPadding((0, strides-1))(o1)
o1 = lset.AveragePoolingLayer(strides)(o1)
if K.int_shape(o1)[-1] != layers:
o1 = lset.ConvLayer(layers, kernel_size=1, padding='same')(o1)
o1 = lset.normalizer()(o1) # no gamma zero, main path
if mact is None:
return Add()([o1, c1])
else:
return Activation(mact)(Add()([o1, c1]))
def conv(x, layers, kernel, c2d=0, act='elu', lset={}, norm=None, dilation_rate=1,
tcn=1, strides=1, se=0, **kws):
lset = layerset(c2d, norm, **lset)
if isinstance(kernel, int): kernel = (kernel,)
for i, ks in enumerate(kernel):
if i > 0: x = Activation(act)(x)
x = lset.ConvLayer(layers, kernel_size=ks, padding='same',
strides=strides, dilation_rate=dilation_rate, **kws)(x)
x = lset.normalizer()(x)
for r in range(1, tcn):
assert strides == 1 and dilation_rate == 1
x = Activation(act)(x)
x = lset.ConvLayer(layers, kernel_size=kernel,
padding='same', dilation_rate=2**r, **kws)(x)
x = lset.normalizer()(x)
return x
def res(x, l, ks, add=1, act='relu', c2d=False, norm=None, pool=2, strides=1,
pooling='nil', lset={}, **kws):
if not c2d: assert K.ndim(x) == 3
else: assert K.ndim(x) == 4
if pooling == 'up': x = lset.UpSamplingLayer(pool)(x)
xc = conv(x, l, ks, c2d=c2d, lset=lset, norm=norm, act=act, strides=strides, **kws)
if add: xc = merge(x, xc, c2d=c2d, lset=lset, norm=norm, mact=None, strides=strides)
x = Activation(act)(xc) #final activation, xc to x naming
if pooling == 1 or pooling == 'max': x = lset.MaxPoolingLayer(pool)(x)
elif pooling == 2 or pooling == 'ave': x = lset.AvePoolingLayer(pool)(x)
return x
# ### Denova start
# In[20]:
class hyper_para():
@dataclass(frozen = True)
class hyper():
lmax: int = 30
outlen: int = lmax + 2
m1max: int = -1
mz_max: int = 2048
pre: float = 0.1
low: float = 0
dim: int = int(mz_max / pre)
sp_dim: int = 4
maxc: int = 8
mode: int = 3
kth: int = 50
dynamic = config({'enhance': 1, 'bsz': 512})
inputs = config({
'y': ([sp_dim, dim], 'float32'),
'info': ([2], 'float32'),
'charge': ([maxc], 'float32')
})
def __init__(self):
self.inner = self.__class__.hyper()
def __getattr__(self, att):
return getattr(self.inner, att)
def dict(self):
return asdict(self.inner)
class data_processor():
def __init__(self, hyper):
self.hyper = hyper
# random drop peaks
def data_enhance(self, mzs, its):
its = normalize(its, self.hyper.mode)
if len(mzs) > 80:
th = kth(its, int(abs(clipn(sigma=2)) * self.hyper.kth))
mzs = mzs[its > th] #mzs first
its = its[its > th]
return mzs, its
def get_inputs(self, sps, training=1):
hyper = self.hyper
batch_size = len(sps)
inputs = config({})
for spec in hyper.inputs:
inputs[spec] = np.zeros((batch_size, *hyper.inputs[spec][0]), dtype=hyper.inputs[spec][1])
for i, sp in enumerate(sps):
mass, c, mzs, its = sp['mass'], sp['charge'], sp['mz'], sp['it']
mzs = mzs / 1.00052
if training and hyper.dynamic.enhance:
mzs, its = self.data_enhance(mzs, its)
else:
its = normalize(its, self.hyper.mode)
inputs.info[i][0] = mass / hyper.mz_max
inputs.info[i][1] = sp['type']
inputs.charge[i][c - 1] = 1
precursor_index = min(hyper.dim - 1, round((mass * c - c + 1) / hyper.pre))
vectorlize(mzs, its, mass, c, hyper.pre, hyper.dim, hyper.low, 0, out=inputs.y[i][0], use_max=1)
inputs.y[i][1][:precursor_index] = inputs.y[i][0][:precursor_index][::-1] # reverse it
vectorlize(mzs, its, mass, c, hyper.pre, hyper.dim, hyper.low, 0, out=inputs.y[i][2], use_max=0)
inputs.y[i][3][:precursor_index] = inputs.y[i][2][:precursor_index][::-1] # reverse mz
return tuple([inputs[key] for key in inputs])
def process(self, sps, training=1):
hyper = self.hyper ##!
batch_size = len(sps)
rst = config({
'peps': np.zeros((batch_size, hyper.outlen, oh_dim), dtype='float32')
})
mtl = config({
'exist': ([len(Alist)], 'float32'),
'nums': ([len(Alist)], 'float32'),
'di': ([400], 'float32'),
'length': ([hyper.outlen], 'float32'),
'rk': ([1], 'float32'),
'charge': ([1], 'int32'),
'mass': ([1], 'float32')
})
for task in mtl:
rst[task] = np.zeros((batch_size, *mtl[task][0]), dtype=mtl[task][1])
for i, sp in enumerate(sps):
pep, mass, c, mzs, its = sp['pep'], sp['mass'], sp['charge'], sp['mz'], sp['it']
pep = sp['pep'].upper().replace('I', 'L')
seq = toseq(pep)
encode(seq, out=rst.peps[i])
# aux tasks
rst.mass[i] = mass / 4000
rst.charge[i] = c - 1
rst.length[i][len(pep)] = 1
rst.rk[i] = int(pep[-1] == 'R' or pep[-1] == 'K')
AA_pairs(seq, out=rst.di[i])
rst.nums[i] = compose(pep)
for c in pep:
rst.exist[i][charMap[c] - 1] = 1
inputs = self.get_inputs(sps, training=training)
return (inputs, {key: rst[key] for key in rst})
hyper = hyper_para()
processor = data_processor(hyper)
# In[21]:
#### models
def bottomup(fu, norm='in', act='relu', **kws):
v1 = fu[0]
fu = fu[1:] # first is v1
for u in fu:
v1 = res(v1, K.int_shape(u)[-1], 5, act=act, strides=2, norm=norm, add=0, **kws)
v1 = k.layers.Add()([v1, u])
# v1 = Activation(act)(v1)
return v1
class denovo_model():
@staticmethod
def sp_net(hyper, act='relu', norm='in'):
inp = Input(shape=hyper.inputs['y'][0], name='sub_sp_inp')
mz_inp = Input(shape=hyper.inputs['info'][0], name='sub_mz_inp')
c_inp = Input(shape=hyper.inputs['charge'][0], name='sub_charge_inp')
v1 = k.layers.Permute((2, 1))(inp)
def sub_net(v1, act='relu'):
for i, l in enumerate([8, 12]):
v1 = res(v1, l, 7, norm=norm, add=1, act=act, strides=2)
lst = []
fils = np.int32([16, 24, 32, 48, 64]) * 12
tcn = np.int32([8, 7, 6, 5, 4, ]) + 1
for i, (l, r) in enumerate(zip(fils, tcn)):
if i > 0:
v1 = res(v1, l, 9, norm=norm, add=1, act=act, strides=2)
ext = r - 5
if r > ext:
r = r - ext
ks = int(5 * 2 ** ext) - 1
else:
ks = int(5 * 2 ** int(r - 1)) - 1
r = 1
v1 = res(v1, l, ks, tcn=r, norm=norm, add=1, act=act)
lst.append(v1)
return v1, lst
v1, lst = sub_net(v1)
v1 = bottomup(lst[2:])
v1 = k.layers.Permute((2, 1))(v1)
v1 = res(v1, hyper.outlen, 1, act=act, norm=norm, add=0)
v1 = k.layers.Permute((2, 1))(v1)
l_size = K.int_shape(v1)[-2]
infos = k.layers.Concatenate(axis=-1)([mz_inp, c_inp]) # meta infos
infos = k.layers.Reshape((l_size, 1))(k.layers.Dense(l_size, activation='sigmoid')(infos))
v1 = k.layers.Concatenate(axis=-1)([v1, infos])
return k.models.Model([inp, mz_inp, c_inp, ], v1, name='sp_net')
@staticmethod
def auxiliary_tasks(v1, hyper, act='relu', norm='in'):
def vec_dense(x, nodes, name, act='sigmoid', layers=tuple(), **kws):
for l in layers: x = res(x, l, 3, act='relu', **kws)
x = k.layers.GlobalAveragePooling1D()(x)
# x = k.layers.Flatten()(x)
x = k.layers.Dense(nodes, activation=act, name=name, dtype='float32')(x)
return x
aux_outputs = []
aux_outputs.append(vec_dense(v1, 1, normal=norm, name='mass'))
aux_outputs.append(vec_dense(v1, hyper.outlen, act='softmax', normal=norm, name='length'))
aux_outputs.append(vec_dense(v1, 1, normal=norm, name='rk'))
aux_outputs.append(vec_dense(v1, hyper.maxc, normal=norm, act='softmax', name='charge'))
#aux exist:
x = v1
x = k.layers.GlobalAveragePooling1D()(x)
x = k.layers.Dense(len(Alist))(x)
x = Activation('sigmoid', name='exist', dtype='float32')(x)
aux_outputs.append(x)
#aux compose:
x = v1
x = k.layers.Permute((2, 1))(x)
x = res(x, len(Alist), 1, act=act, norm=norm)
x = k.layers.Permute((2, 1))(x)
x = k.layers.Conv1D(hyper.lmax, kernel_size=1, padding='same')(x)
x = k.layers.Activation('softmax', name='nums', dtype='float32')(x)
aux_outputs.append(x)
#aux AA pairs:
x = v1
x = k.layers.GlobalAveragePooling1D()(x)
x = k.layers.Dense(400)(x)
x = k.layers.Activation('sigmoid', name='di', dtype='float32')(x)
aux_outputs.append(x) # don't merge
return aux_outputs
@staticmethod
def build(hyper, act='relu', norm='in'):
inp = Input(shape=hyper.inputs['y'][0], name='sp_inp')
mz_inp = Input(shape=hyper.inputs['info'][0], name='mz_inp')
c_inp = Input(shape=hyper.inputs['charge'][0], name='charge_inp')
model_inputs = [inp, mz_inp, c_inp]
spmodel = denovo_model.sp_net(hyper)
sp_vector = spmodel(model_inputs)
aux_outputs = denovo_model.auxiliary_tasks(sp_vector, hyper)
final_pep = k.layers.Conv1D(oh_dim, kernel_size=1, padding='same', use_bias=1)(sp_vector)
final_pep = k.layers.Activation('softmax', name='peps', dtype='float32')(final_pep)
full_model = k.models.Model(inputs=model_inputs, outputs=aux_outputs + [final_pep], name='full_model')
novo = k.models.Model(inputs=model_inputs, outputs=final_pep, name='denovo')
return full_model, novo, spmodel
# In[22]:
class model_builder():
class loss_fn:
@staticmethod
def mse_ce(fn=k.losses.categorical_crossentropy, c=0.25):
# @tf.function
def mse(yt, yp):
yt = K.cast(yt, yp.dtype)
ce = fn(yt, yp)
yt = K.cast(K.argmax(yt, axis=-1), 'float32') / 32.0
yp = K.cast(K.argmax(yp, axis=-1), 'float32') / 32.0
return c * k.losses.mean_absolute_error(yt, yp) + ce * 0.25
return mse
@staticmethod
def mass_ce(fn=k.losses.categorical_crossentropy, c=0.001):
def mse(yt, yp):
yt = K.cast(yt, yp.dtype)
ce_loss = fn(yt, yp)
mp = K.sum(K.batch_flatten(yp * mlist), axis=-1)
mt = K.sum(K.batch_flatten(yt * mlist), axis=-1)
return c * k.losses.mean_absolute_error(mp, mt) + ce_loss
return mse
@staticmethod
def mask_ce(yt, yp, ls=0.00):
yts = K.argmax(yt, axis=-1)
mask = K.cast(K.greater(yts, 0), dtype='int32')
loss = k.losses.categorical_crossentropy(yt, yp, label_smoothing=ls)
return K.sum(loss, axis=-1) / K.cast(K.sum(mask, axis=-1), dtype=K.floatx())
@staticmethod
def mask_acc(yt, yp):
yts = K.argmax(yt, axis=-1)
yps = K.argmax(yp, axis=-1)
mask = K.cast(K.greater(yts, 0), dtype='int32')
err = K.cast(K.not_equal(yts, yps), dtype='int32')
return 1 - K.sum(err, axis=-1) / K.sum(mask, axis=-1)
@staticmethod
def full_acc(yt, yp):
yts = K.argmax(yt, axis=-1)
yps = K.argmax(yp, axis=-1)
return K.cast(K.all(K.equal(yts, yps), axis=-1), dtype='float32')
def __init__(self, hyper, denovo_model=denovo_model):
self.hyper = hyper
self.param = config()
self.loss_fn = self.__class__.loss_fn
self.denovo_model = denovo_model
def set_loss(self):
loss_fn = self.loss_fn
self.losses = {
"peps": loss_fn.mass_ce(fn=loss_fn.mask_ce, c=0.0001),
"exist": binary_crossentropy,
"nums": sparse_categorical_crossentropy,
"di": binary_crossentropy,
"mass": MSE,
'rk': binary_crossentropy,
"charge": sparse_categorical_crossentropy,
'length': loss_fn.mse_ce(categorical_crossentropy)
}
self.weights = {
"peps": 1,
"nums": 0.2,
"exist": 0.2,
"di": 0.004, 'rk': 0.05,
'mass': 0.1, "charge": 0.1, "length": 0.05
}
self.metrics = {
"peps": [loss_fn.mask_acc, 'categorical_crossentropy',
'acc', loss_fn.mask_ce, loss_fn.full_acc],
"nums": 'acc',
"exist": 'binary_accuracy',
'rk': 'acc',
'di': 'binary_accuracy'
}
def build(self, summary=True):
self.dm, self.novo, *self.rest = self.denovo_model.build(self.hyper)
if summary: self.rest[0].summary()
return self.dm, self.novo
def compile(self, model=None, opt='adam'):
self.set_loss()
if model is None:
self.dm.compile(optimizer=opt, loss=self.losses, loss_weights=self.weights, metrics=self.metrics)
else:
model.compile(optimizer=opt, loss=self.losses, loss_weights=self.weights, metrics=self.metrics)
# In[23]:
# #### start
random.seed(42)
np.random.seed(42)
tf.random.set_seed(42)
class train_mgr():
def data_generator(self, sps, **kws):
return data_seq(sps, processor.process, hyper.dynamic.bsz, xonly=0, **kws)
def setup(self, **kws):
self.his = tf.keras.callbacks.History()
self.callbacks = [
ModelCheckpoint('novo.hdf5', save_best_only=True, monitor='val_peps_mask_acc')
]
self.builder = model_builder(hyper)
self.dm, self.novo, *self.other_model = self.builder.build(**kws)
return self.dm, self.novo
def prepare_data(self):
self.trainingset = i2l(filter_spectra(readmgf('train.mgf', 'hcd')))
self.valset = i2l(filter_spectra(readmgf('validation.mgf', 'hcd')))
def compile(self, bsz=None, lr=None):
### para
hyper.dynamic.eps = 50
hyper.dynamic.bsz = 32 * int(hyper.pre * 4 * 2.5) #* 2
hyper.dynamic.lr = lr if lr else (hyper.dynamic.bsz / 1024) * 0.0009 * 16 * 6
hyper.dynamic.opt = radam(lr=hyper.dynamic.lr)
self.builder.compile(opt=hyper.dynamic.opt)
return self.dm, self.novo
def run(self):
callbacks = self.callbacks + [self.his]
self.dm.fit(self.data_generator(self.trainingset), epochs=hyper.dynamic.eps,
validation_data=self.data_generator(self.valset, training=0),
verbose=1, callbacks=callbacks)
# In[28]:
manager = train_mgr()
dm, novo = manager.setup(summary=1)
manager.compile()
manager.prepare_data()
manager.run()