-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmaml.py
219 lines (188 loc) · 7.17 KB
/
maml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# -*- coding: utf-8 -*-
# @Author : Lin Lan (ryan.linlan@gmail.com)
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import numpy as np
import ray
from ray.rllib.agents import Agent
from ray.rllib.agents.ppo.ppo import DEFAULT_CONFIG as ppo_default_config
from ray.rllib.utils import merge_dicts
from ray.rllib.evaluation.sample_batch import DEFAULT_POLICY_ID
from ray.rllib.env.env_context import EnvContext
from ray.tune.trial import Resources
from maml_policy_graph import MAMLPolicyGraph
from maml_optimizer import MAMLOptimizer
from maml_policy_evaluator import MAMLPolicyEvaluator
from reset_wrapper import ResetArgsHolder
logger = logging.getLogger("ray.rllib.agents.maml.maml")
DEFAULT_CONFIG = merge_dicts(
ppo_default_config,
{
"random_seed": 1,
"inner_lr": 0.01,
"outer_lr": 1e-3,
"num_inner_updates": 3,
"inner_grad_clip": 10.0,
"num_tasks": 500,
"clip_param": 0.2,
"vf_share_layers": True,
"use_gae": True,
"gamma": 0.99,
"lambda": 0.97,
"horizon": 100,
"kl_coeff": 0.0,
"entropy_coeff": 0.0,
"vf_loss_coeff": 0.05,
"vf_clip_param": 20.0,
"num_sgd_iter": 5,
"sample_batch_size": 200,
"batch_mode": "complete_episodes",
"observation_filter": "NoFilter",
"num_workers": 20,
"num_envs_per_worker": 25,
"tf_session_args": {
"intra_op_parallelism_threads": 1,
"inter_op_parallelism_threads": 1
}
}
)
class MAMLAgent(Agent):
_agent_name = "MAML"
_default_config = DEFAULT_CONFIG
_policy_graph = MAMLPolicyGraph
@classmethod
def default_resource_request(cls, config):
cf = merge_dicts(cls._default_config, config)
return Resources(
cpu=1,
gpu=0,
extra_cpu=cf["num_cpus_per_worker"] * cf["num_workers"],
extra_gpu=cf["num_gpus_per_worker"] * cf["num_workers"])
def make_local_evaluator(self, env_creator, policy_dict):
return self._make_evaluator(
MAMLPolicyEvaluator,
env_creator,
policy_dict,
0,
merge_dicts(
self.config, {
"tf_session_args": {
"intra_op_parallelism_threads": None,
"inter_op_parallelism_threads": None
}
}
))
def make_remote_evaluators(self, env_creator, policy_dict, count,
remote_args):
cls = MAMLPolicyEvaluator.as_remote(**remote_args).remote
return [
self._make_evaluator(cls, env_creator, policy_dict, i + 1,
self.config) for i in range(count)
]
def _init(self):
self._validate_config()
env = self.env_creator(EnvContext({"reset_args_holder": 100}, 0))
self.reset_args_holder = ResetArgsHolder.remote(
(self.config["num_workers"], ) + env.reset_args_shape)
self.config["env_config"] = \
{"reset_args_holder": self.reset_args_holder}
self.rng = np.random.RandomState(self.config["random_seed"])
self.all_reset_args = env.sample_reset_args(self.rng,
self.config["num_tasks"])
observation_space = env.observation_space
action_space = env.action_space
policy_dict_local = {
DEFAULT_POLICY_ID: (
self._policy_graph,
observation_space,
action_space,
{"mode": "local"})}
policy_dict_remote = {
DEFAULT_POLICY_ID: (
self._policy_graph,
observation_space,
action_space,
{"mode": "remote"})}
self.local_evaluator = self.make_local_evaluator(
self.env_creator, policy_dict_local)
self.remote_evaluators = self.make_remote_evaluators(
self.env_creator, policy_dict_remote, self.config["num_workers"], {
"num_cpus": self.config["num_cpus_per_worker"],
"num_gpus": self.config["num_gpus_per_worker"]})
self.optimizer = MAMLOptimizer(
self.local_evaluator, self.remote_evaluators, {
"num_inner_updates": self.config["num_inner_updates"],
"num_sgd_iter": self.config["num_sgd_iter"]})
def _validate_config(self):
# num_workers == meta_batch_size
pass
def _train(self):
batch_reset_args_indices = \
self.rng.choice(self.all_reset_args.shape[0],
size=self.config["num_workers"],
replace=False)
batch_reset_args = self.all_reset_args[batch_reset_args_indices]
ray.get(self.reset_args_holder.set.remote(batch_reset_args))
fetches = self.optimizer.step()
# if "kl" in fetches:
# raise NotImplementedError
res = self.optimizer.collect_metrics()
res.update(
info=dict(fetches, **res.get("info", {})))
return res
def train(self):
return Agent.__base__.train(self)
if __name__ == "__main__":
import time
import ray
import numpy as np
from ray.tune.registry import register_env
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.evaluation.metrics import summarize_episodes
from ray.tune.logger import pretty_print
from fcnet import FullyConnectedNetwork
from point_env import PointEnv
from reset_wrapper import ResetWrapper
# logger = logging.getLogger("ray.rllib.agents.maml")
# logger.setLevel(logging.DEBUG)
ray.init()
env_cls = PointEnv
register_env(env_cls.__name__,
lambda env_config: ResetWrapper(env_cls(), env_config))
# register_env("PointEnv", lambda env_config: PointEnv(env_config))
ModelCatalog.register_custom_model("maml_mlp", FullyConnectedNetwork)
config = {
# "num_workers": 0,
"model": {
"custom_model": "maml_mlp",
"fcnet_hiddens": [100, 100],
"fcnet_activation": "tanh",
"custom_options": {"vf_share_layers": True},
# "squash_to_range": True,
# "free_log_std": True
}
}
agent = MAMLAgent(config=config, env=env_cls.__name__)
evaluator = agent.local_evaluator
policy = evaluator.policy_map[DEFAULT_POLICY_ID]
optimizer = agent.optimizer
for i in range(10):
st = time.time()
logger.info(f"\n{i}")
res = agent.train()
logger.info(f'\n{pretty_print(res["inner_update_metrics"])}')
# only perform inner update in the local evaluator
# policy.clear_grad_buffer()
# def func():
# grads, infos, samples = evaluator._inner_update_once()
# policy.update_grad_buffer(grads)
# episodes = evaluator.sampler.get_metrics()
# logger.info(
# f'\n{pretty_print(summarize_episodes(episodes, episodes))}')
# logger.info(f"\n{pretty_print(infos)}")
# return grads, samples
# for i in range(1000):
# print(i)
# grads, samples = func()