forked from HoagyC/sparse_coding
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathalpha_easy_training_code_rm.py
237 lines (202 loc) · 9.79 KB
/
alpha_easy_training_code_rm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import torch
import argparse
from utils import dotdict
from activation_dataset import setup_token_data
import wandb
import json
from datetime import datetime
from tqdm import tqdm
from einops import rearrange
# from standard_metrics import run_with_model_intervention, perplexity_under_reconstruction, mean_nonzero_activations
# Create
# # make an argument parser directly below
# parser = argparse.ArgumentParser()
# parser.add_argument("--model_name", type=str, default="EleutherAI/pythia-70m-deduped")
# parser.add_argument("--layer", type=int, default=4)
# parser.add_argument("--setting", type=str, default="residual")
# parser.add_argument("--l1_alpha", type=float, default=3e-3)
# parser.add_argument("--num_epochs", type=int, default=10)
# parser.add_argument("--model_batch_size", type=int, default=4)
# parser.add_argument("--lr", type=float, default=1e-3)
# parser.add_argument("--kl", type=bool, default=False)
# parser.add_argument("--reconstruction", type=bool, default=False)
# parser.add_argument("--dataset_name", type=str, default="NeelNanda/pile-10k")
# parser.add_argument("--device", type=str, default="cuda:4")
# args = parser.parse_args()
cfg = dotdict()
# cfg.model_name="EleutherAI/pythia-70m-deduped"
# cfg.model_name="usvsnsp/pythia-6.9b-rm-full-hh-rlhf"
cfg.model_name="reciprocate/dahoas-gptj-rm-static"
# cfg.layers=[i for i in range(28)]
layers = 8
cfg.layers=[i for i in range(20,28)]
cfg.setting="residual"
# cfg.tensor_name="gpt_neox.layers.{layer}"
cfg.tensor_name="transformer.h.{layer}"
# linearly interpolate between 8e-4 & 1e-4
# cfg.l1_alpha=torch.linspace(1e-4, 1e-3, 8).tolist()
cfg.l1_alpha=torch.linspace(3.5e-3, 7e-3, 8).tolist()
cfg.sparsity=None
cfg.model_batch_size=4
cfg.lr=1e-3
cfg.kl=False
cfg.reconstruction=False
# cfg.dataset_name="NeelNanda/pile-10k"
# cfg.dataset_name="Skylion007/openwebtext"
cfg.dataset_name="Elriggs/openwebtext-100k"
cfg.device="cuda:0"
cfg.ratio = 4
# cfg.device="cpu"
tensor_names = [cfg.tensor_name.format(layer=layer) for layer in cfg.layers]
# Load in the model
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(cfg.model_name).to(cfg.device)
tokenizer = AutoTokenizer.from_pretrained(cfg.model_name)
from datasets import load_dataset, concatenate_datasets
from activation_dataset import chunk_and_tokenize
# Load the datasets
dataset1 = load_dataset("Anthropic/hh-rlhf", split="train")
dataset2 = load_dataset("Elriggs/openwebtext-100k", split="train")
# Rename 'chosen' column in dataset1 to 'text' to match dataset2
dataset1 = dataset1.rename_column("chosen", "text")
# Concatenate the datasets
dataset = concatenate_datasets([dataset1, dataset2])
# Chunk & tokenize the dataset
max_seq_length= 256
dataset, _ = chunk_and_tokenize(dataset, tokenizer, max_length=max_seq_length)
max_tokens = dataset.num_rows*max_seq_length
print(f"Number of tokens: {max_tokens/1e6:.2f}M")
from torch.utils.data import DataLoader
batch_size = 16
token_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Run 1 datapoint on model to get the activation size (cause don't want to deal w/ different naming schemes in config files)
from baukit import Trace, TraceDict
text = "1"
tokens = tokenizer(text, return_tensors="pt").input_ids.to(cfg.device)
# Your activation name will be different. In the next cells, we will show you how to find it.
with torch.no_grad():
with Trace(model, tensor_names[0]) as ret:
_ = model(tokens)
representation = ret.output
# check if instance tuple
if(isinstance(representation, tuple)):
representation = representation[0]
activation_size = representation.shape[-1]
print(f"Activation size: {activation_size}")
from torch import nn
from torchtyping import TensorType
class TiedSAE(nn.Module):
def __init__(self, activation_size, n_dict_components):
super().__init__()
self.encoder = nn.Parameter(torch.empty((n_dict_components, activation_size)))
nn.init.xavier_uniform_(self.encoder)
self.encoder_bias = nn.Parameter(torch.zeros((n_dict_components,)))
def get_learned_dict(self):
norms = torch.norm(self.encoder, 2, dim=-1)
return self.encoder / torch.clamp(norms, 1e-8)[:, None]
def encode(self, batch):
c = torch.einsum("nd,bd->bn", self.encoder, batch)
c = c + self.encoder_bias
c = torch.clamp(c, min=0.0)
return c
def decode(self, code: TensorType["_batch_size", "_n_dict_components"]) -> TensorType["_batch_size", "_activation_size"]:
learned_dict = self.get_learned_dict()
x_hat = torch.einsum("nd,bn->bd", learned_dict, code)
return x_hat
def forward(self, batch: TensorType["_batch_size", "_activation_size"]) -> TensorType["_batch_size", "_activation_size"]:
c = self.encode(batch)
x_hat = self.decode(c)
return x_hat, c
def n_dict_components(self):
return self.get_learned_dict().shape[0]
n_dict_components = activation_size*cfg.ratio
all_autoencoders = [TiedSAE(activation_size, n_dict_components) for _ in range(len(tensor_names))]
optimizers = [torch.optim.Adam(autoencoder.parameters(), lr=cfg.lr) for autoencoder in all_autoencoders]
print("WARNING: Only works on tied SAE")
# Wandb setup
secrets = json.load(open("secrets.json"))
wandb.login(key=secrets["wandb_key"])
start_time = datetime.now().strftime("%Y%m%d-%H%M%S")
wandb_run_name = f"{cfg.model_name}_{start_time[4:]}_{cfg.sparsity}" # trim year
print(f"wandb_run_name: {wandb_run_name}")
wandb.init(project="sparse coding", config=dict(cfg), name=wandb_run_name, entity="sparse_coding")
import numpy as np
# Make directory trained_models if it doesn't exist
import os
if not os.path.exists("trained_models"):
os.makedirs("trained_models")
model_save_name = cfg.model_name.split("/")[-1]
num_batch = len(token_loader)
log_space = np.logspace(0, np.log10(num_batch), 11) # 11 to get 10 intervals
save_batches = [int(x) for x in log_space[1:]] # Skip the first (0th) interval
dead_features = [torch.zeros(n_dict_components) for _ in range(len(tensor_names))]
last_encoders = [autoencoder.encoder.clone().detach() for autoencoder in all_autoencoders]
# max_num_tokens = 100000000
# Freeze model parameters
model.eval()
model.requires_grad_(False)
for i, batch in enumerate(tqdm(token_loader)):
if i > 5: # for testing code works
break
tokens = batch["input_ids"].to(cfg.device)
with torch.no_grad(): # As long as not doing KL divergence, don't need gradients for model
with TraceDict(model, tensor_names) as ret:
_ = model(tokens)
for auto_ind in range(len(tensor_names)):
# Index into correct autoencoder, optimizer, and tensor_name
autoencoder = all_autoencoders[auto_ind].to(cfg.device)
optimizer = optimizers[auto_ind]
tensor_name = tensor_names[auto_ind]
dead_feature = dead_features[auto_ind]
last_encoder = last_encoders[auto_ind]
l1_alpha = cfg.l1_alpha[auto_ind]
# Get intermediate layer activations
representation = ret[tensor_name].output
if(isinstance(representation, tuple)):
representation = representation[0]
layer_activations = rearrange(representation, "b seq d_model -> (b seq) d_model")
# Run through autoencoder
c = autoencoder.encode(layer_activations)
x_hat = autoencoder.decode(c)
# Calculate loss
reconstruction_loss = (x_hat - layer_activations).pow(2).mean()
l1_loss = torch.norm(c, 1, dim=-1).mean()
total_loss = reconstruction_loss + l1_alpha*l1_loss
# Update dead features
dead_feature += c.sum(dim=0).cpu()
# Log
if (i % 50 == 0): # Check here so first check is model w/o change
# self_similarity = torch.cosine_similarity(c, last_encoder, dim=-1).mean().cpu().item()
# Above is wrong, should be similarity between encoder and last encoder
num_tokens_so_far = i*max_seq_length*batch_size
with torch.no_grad():
# print the norm of layer_activations
# print(f"Layer {auto_ind} | Layer Activation Norm: {torch.norm(layer_activations, 2, dim=-1).mean().cpu().item()}")
self_similarity = torch.cosine_similarity(autoencoder.encoder, last_encoder.to(cfg.device), dim=-1).mean().cpu().item()
last_encoders[auto_ind] = autoencoder.encoder.clone().to("cpu")
sparsity = (c != 0).float().mean(dim=0).sum().cpu().item()
# Count number of dead_features are zero
num_dead_features = (dead_feature == 0).sum().item()
print(f"Layer {auto_ind} | Sparsity: {sparsity:.1f} | Dead Features: {num_dead_features} | Total Loss: {total_loss:.2f} | Reconstruction Loss: {reconstruction_loss:.2f} | L1 Loss: {l1_alpha*l1_loss:.2f} | l1_alpha: {l1_alpha:.2e} | Tokens: {num_tokens_so_far} | Self Similarity: {self_similarity:.2f}")
wandb.log({f"Layer {auto_ind}": {
'Sparsity': sparsity,
'Dead Features': num_dead_features,
'Total Loss': total_loss.item(),
'Reconstruction Loss': reconstruction_loss.item(),
'L1 Loss': (l1_alpha*l1_loss).item(),
'l1_alpha': l1_alpha,
'Tokens': num_tokens_so_far,
'Self Similarity': self_similarity,
'step': i}
})
dead_feature = torch.zeros(autoencoder.encoder.shape[0])
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
# Put SAE back on cpu
all_autoencoders[auto_ind] = autoencoder.to("cpu")
wandb.finish()
# Save every autoencoder
for i, autoencoder in enumerate(all_autoencoders):
save_name = f"{model_save_name}_r{cfg.ratio}_{tensor_names[i]}" # trim year
torch.save(autoencoder, f"trained_models/{save_name}.pt")