forked from facebookresearch/fairseq-lua
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.lua
253 lines (231 loc) · 8.32 KB
/
generate.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
-- Copyright (c) 2017-present, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the license found in the LICENSE file in
-- the root directory of this source tree. An additional grant of patent rights
-- can be found in the PATENTS file in the same directory.
--
--[[
--
-- Batch hypothesis generation script.
--
--]]
require 'nn'
require 'xlua'
require 'fairseq'
local tnt = require 'torchnet'
local tds = require 'tds'
local plpath = require 'pl.path'
local hooks = require 'fairseq.torchnet.hooks'
local data = require 'fairseq.torchnet.data'
local search = require 'fairseq.search'
local clib = require 'fairseq.clib'
local mutils = require 'fairseq.models.utils'
local utils = require 'fairseq.utils'
local pretty = require 'fairseq.text.pretty'
local cmd = torch.CmdLine()
cmd:option('-path', 'model1.th7,model2.th7', 'path to saved model(s)')
cmd:option('-nobleu', false, 'don\'t produce final bleu score')
cmd:option('-quiet', false, 'don\'t print generated text')
cmd:option('-beam', 1, 'beam width')
cmd:option('-lenpen', 1,
'length penalty: <1.0 favors shorter, >1.0 favors longer sentences')
cmd:option('-unkpen', 0,
'unknown word penalty: <0 produces more, >0 produces less unknown words')
cmd:option('-subwordpen', 0,
'subword penalty: <0 favors longer, >0 favors shorter words')
cmd:option('-covpen', 0,
'coverage penalty: favor hypotheses that cover all source tokens')
cmd:option('-nbest', 1, 'number of candidate hypotheses')
cmd:option('-batchsize', 16, 'batch size')
cmd:option('-minlen', 1, 'minimum length of generated hypotheses')
cmd:option('-maxlen', 500, 'maximum length of generated hypotheses')
cmd:option('-sourcelang', 'de', 'source language')
cmd:option('-targetlang', 'en', 'target language')
cmd:option('-datadir', 'data-bin')
cmd:option('-dataset', 'test', 'data subset')
cmd:option('-partial', '1/1',
'decode only part of the dataset, syntax: part_index/num_parts')
cmd:option('-vocab', '', 'restrict output to target vocab')
cmd:option('-seed', 1111, 'random number seed (for dataset)')
cmd:option('-model', '', 'model type for legacy models')
cmd:option('-ndatathreads', 0, 'number of threads for data preparation')
cmd:option('-aligndictpath', '', 'path to an alignment dictionary (optional)')
cmd:option('-nmostcommon', 500,
'the number of most common words to keep when using alignment')
cmd:option('-topnalign', 100, 'the number of the most common alignments to use')
cmd:option('-freqthreshold', -1,
'the minimum frequency for an alignment candidate in order' ..
'to be considered (default no limit)')
cmd:option('-fconvfast', false, 'make fconv model faster')
local cuda = utils.loadCuda()
local config = cmd:parse(arg)
torch.manualSeed(config.seed)
if cuda.cutorch then
cutorch.manualSeed(config.seed)
end
local function accTime()
local total = {}
return function(times)
for k, v in pairs(times or {}) do
if not total[k] then
total[k] = {real = 0, sys = 0, user = 0}
end
for l, w in pairs(v) do
total[k][l] = total[k][l] + w
end
end
return total
end
end
local function accBleu(beam, dict)
local scorer = clib.bleu(dict:getPadIndex(), dict:getEosIndex())
local unkIndex = dict:getUnkIndex()
local refBuf, hypoBuf = torch.IntTensor(), torch.IntTensor()
return function(sample, hypos)
if sample then
local tgtT = sample.target:t()
local ref = refBuf:resizeAs(tgtT):copy(tgtT)
:apply(function(x)
return x == unkIndex and -unkIndex or x
end)
for i = 1, sample.bsz do
local hypoL = hypos[(i - 1) * beam + 1]
local hypo = hypoBuf:resize(hypoL:size()):copy(hypoL)
scorer:add(ref[i], hypo)
end
end
return scorer
end
end
-------------------------------------------------------------------
-- Load data
-------------------------------------------------------------------
config.dict = torch.load(plpath.join(config.datadir,
'dict.' .. config.targetlang .. '.th7'))
print(string.format('| [%s] Dictionary: %d types', config.targetlang,
config.dict:size()))
config.srcdict = torch.load(plpath.join(config.datadir,
'dict.' .. config.sourcelang .. '.th7'))
print(string.format('| [%s] Dictionary: %d types', config.sourcelang,
config.srcdict:size()))
if config.aligndictpath ~= '' then
config.aligndict = tnt.IndexedDatasetReader{
indexfilename = config.aligndictpath .. '.idx',
datafilename = config.aligndictpath .. '.bin',
mmap = true,
mmapidx = true,
}
config.nmostcommon = math.max(config.nmostcommon, config.dict.nspecial)
config.nmostcommon = math.min(config.nmostcommon, config.dict:size())
end
local _, test = data.loadCorpus{config = config, testsets = {config.dataset}}
local dataset = test[config.dataset]
local model
if config.model ~= '' then
model = mutils.loadLegacyModel(config.path, config.model)
else
model = require(
'fairseq.models.ensemble_model'
).new(config)
if config.fconvfast then
local nfconv = 0
for _, fconv in ipairs(model.models) do
if torch.typename(fconv) == 'FConvModel' then
fconv:makeDecoderFast()
nfconv = nfconv + 1
end
end
assert(nfconv > 0, '-fconvfast requires an fconv model in the ensemble')
end
end
local vocab = nil
if config.vocab ~= '' then
vocab = tds.Hash()
local fd = io.open(config.vocab)
while true do
local line = fd:read()
if line == nil then
break
end
-- Add word on this line together with all prefixes
for i = 1, line:len() do
vocab[line:sub(1, i)] = 1
end
end
end
local searchf = search.beam{
ttype = model:type(),
dict = config.dict,
srcdict = config.srcdict,
beam = config.beam,
lenPenalty = config.lenpen,
unkPenalty = config.unkpen,
subwordPenalty = config.subwordpen,
coveragePenalty = config.covpen,
vocab = vocab,
}
local dict, srcdict = config.dict, config.srcdict
local display = pretty.displayResults(dict, srcdict, config.nbest, config.beam)
local computeSampleStats = hooks.computeSampleStats(dict)
-- Ensure that the model is fully unrolled for the maximum source sentence
-- length in the test set. Lazy unrolling might otherwise distort the generation
-- time measurements.
local maxlen = 1
for samples in dataset() do
for _, sample in ipairs(samples) do
maxlen = math.max(maxlen, sample.source:size(1))
end
end
model:extend(maxlen)
-- allow to decode only part of the set k/N means decode part k of N
local partidx, nparts = config.partial:match('(%d+)/(%d+)')
partidx, nparts = tonumber(partidx), tonumber(nparts)
-- let's decode
local addBleu = accBleu(config.beam, dict)
local addTime = accTime()
local timer = torch.Timer()
local nsents, ntoks, nbatch = 0, 0, 0
local state = {}
for samples in dataset() do
if (nbatch % nparts == partidx - 1) then
assert(#samples == 1, 'can\'t handle multiple samples')
state.samples = samples
computeSampleStats(state)
local sample = state.samples[1]
local hypos, scores, attns, t = model:generate(config, sample, searchf)
nsents = nsents + sample.bsz
ntoks = ntoks + sample.ntokens
addTime(t)
-- print results
if not config.quiet then
display(sample, hypos, scores, attns)
end
-- accumulate bleu
if (not config.nobleu) then
addBleu(sample, hypos)
end
end
nbatch = nbatch + 1
end
-- report overall stats
local elapsed = timer:time().real
local statmsg =
('| Translated %d sentences (%d tokens) in %.1fs (%.2f tokens/s)')
:format(nsents, ntoks, elapsed, ntoks / elapsed)
if state.dictstats then
local avg = state.dictstats.size / state.dictstats.n
statmsg = ('%s with avg dict of size %.1f'):format(statmsg, avg)
end
print(statmsg)
local timings = '| Timings:'
local totalTime = addTime()
for k, v in pairs(totalTime) do
local percent = 100 * v.real / elapsed
timings = ('%s %s %.1fs (%.1f%%),'):format(timings, k, v.real, percent)
end
print(timings:sub(1, -2))
if not config.nobleu then
local bleu = addBleu()
print(('| %s'):format(bleu:resultString()))
end