Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adobe240 dataset #12

Open
hhhhhumengshun opened this issue Aug 8, 2022 · 2 comments
Open

Adobe240 dataset #12

hhhhhumengshun opened this issue Aug 8, 2022 · 2 comments

Comments

@hhhhhumengshun
Copy link

I would like to know which subset of Adobe dataset is used, I tested all of them and the values are very low, is it also cropped to 512*512? Thanks

@ltkong218
Copy link
Owner

For 8x frame interpolation, we follow the FLAVR project. It seems that FLAVR does not provide the Adobe240 evaluation dataset, so we select a subset of all Adobe240 video sequences and perform center crop with 512x512. Below is our Adobe240 dataset python script:

import os
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import random
import glob
from utils import read


def random_crop(img_0, img_1, img_2, img_3, img_4, img_5, img_6, img_7, img_8, crop_size):
    h, w = crop_size[0], crop_size[1]
    ih, iw, _ = img_0.shape
    x = np.random.randint(0, ih-h+1)
    y = np.random.randint(0, iw-w+1)
    img_0 = img_0[x:x+h, y:y+w, :]
    img_1 = img_1[x:x+h, y:y+w, :]
    img_2 = img_2[x:x+h, y:y+w, :]
    img_3 = img_3[x:x+h, y:y+w, :]
    img_4 = img_4[x:x+h, y:y+w, :]
    img_5 = img_5[x:x+h, y:y+w, :]
    img_6 = img_6[x:x+h, y:y+w, :]
    img_7 = img_7[x:x+h, y:y+w, :]
    img_8 = img_8[x:x+h, y:y+w, :]
    return img_0, img_1, img_2, img_3, img_4, img_5, img_6, img_7, img_8


def center_crop(img_0, img_1, img_2, img_3, img_4, img_5, img_6, img_7, img_8, crop_size):
    h, w = crop_size[0], crop_size[1]
    ih, iw, _ = img_0.shape
    img_0 = img_0[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
    img_1 = img_1[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
    img_2 = img_2[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
    img_3 = img_3[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
    img_4 = img_4[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
    img_5 = img_5[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
    img_6 = img_6[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
    img_7 = img_7[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
    img_8 = img_8[(ih//2-h//2):(ih//2+h//2), (iw//2-w//2):(iw//2+w//2), :]
    return img_0, img_1, img_2, img_3, img_4, img_5, img_6, img_7, img_8


def augment(img_0, img_1, img_2, img_3, img_4, img_5, img_6, img_7, img_8):
    if random.uniform(0, 1) < 0.5:
        img_0 = img_0[:, :, ::-1]
        img_1 = img_1[:, :, ::-1]
        img_2 = img_2[:, :, ::-1]
        img_3 = img_3[:, :, ::-1]
        img_4 = img_4[:, :, ::-1]
        img_5 = img_5[:, :, ::-1]
        img_6 = img_6[:, :, ::-1]
        img_7 = img_7[:, :, ::-1]
        img_8 = img_8[:, :, ::-1]

    if random.uniform(0, 1) < 0.5:
        img_0 = img_0[:, ::-1]
        img_1 = img_1[:, ::-1]
        img_2 = img_2[:, ::-1]
        img_3 = img_3[:, ::-1]
        img_4 = img_4[:, ::-1]
        img_5 = img_5[:, ::-1]
        img_6 = img_6[:, ::-1]
        img_7 = img_7[:, ::-1]
        img_8 = img_8[:, ::-1]
    return img_0, img_1, img_2, img_3, img_4, img_5, img_6, img_7, img_8


class Adobe240(Dataset):
    def __init__(self, data_root='/home/ltkong/Datasets/adobe240_frames', mode="train", interFrames=7, n_inputs=2, ext="png"):
        super().__init__()
        self.mode = mode
        self.interFrames = interFrames
        self.n_inputs = n_inputs
        self.setLength = (n_inputs-1)*(interFrames+1)+1 ## We require these many frames in total for interpolating `interFrames` number of
                                                ## intermediate frames with `n_input` input frames.
        self.data_root = os.path.join(data_root)
        video_list = os.listdir(self.data_root)[9::10]
        self.frames_list = []
        self.file_list = []
        for video in video_list:
            frames = sorted(os.listdir(os.path.join(self.data_root , video)))
            n_sets = (len(frames) - self.setLength)//(interFrames+1)  + 1
            videoInputs = [frames[(interFrames+1)*i:(interFrames+1)*i+self.setLength ] for i in range(n_sets)]
            videoInputs = [[os.path.join(video , f) for f in group] for group in videoInputs]
            self.file_list.extend(videoInputs)


    def __getitem__(self, idx):
        imgpaths = [os.path.join(self.data_root , fp) for fp in self.file_list[idx]]
        pick_idxs = list(range(0,self.setLength,self.interFrames+1))
        rem = self.interFrames%2
        gt_idx = list(range(self.setLength//2-self.interFrames//2 , self.setLength//2+self.interFrames//2+rem)) 
        input_paths = [imgpaths[idx] for idx in pick_idxs]
        gt_paths = [imgpaths[idx] for idx in gt_idx]

        img_0 = np.array(read(input_paths[0]))
        img_1 = np.array(read(gt_paths[0]))
        img_2 = np.array(read(gt_paths[1]))
        img_3 = np.array(read(gt_paths[2]))
        img_4 = np.array(read(gt_paths[3]))
        img_5 = np.array(read(gt_paths[4]))
        img_6 = np.array(read(gt_paths[5]))
        img_7 = np.array(read(gt_paths[6]))
        img_8 = np.array(read(input_paths[1]))

        if self.mode == 'train':
            img_0, img_1, img_2, img_3, img_4, img_5, img_6, img_7, img_8 = random_crop(img_0, img_1, img_2, img_3, img_4, img_5, img_6, img_7, img_8, (256, 256))
            img_0, img_1, img_2, img_3, img_4, img_5, img_6, img_7, img_8 = augment(img_0, img_1, img_2, img_3, img_4, img_5, img_6, img_7, img_8)
        elif self.mode == 'test':
            img_0, img_1, img_2, img_3, img_4, img_5, img_6, img_7, img_8 = center_crop(img_0, img_1, img_2, img_3, img_4, img_5, img_6, img_7, img_8, (512, 512))

        img_0 = img_0.transpose((2, 0, 1)).astype(np.float32) / 255.0
        img_1 = img_1.transpose((2, 0, 1)).astype(np.float32) / 255.0
        img_2 = img_2.transpose((2, 0, 1)).astype(np.float32) / 255.0
        img_3 = img_3.transpose((2, 0, 1)).astype(np.float32) / 255.0
        img_4 = img_4.transpose((2, 0, 1)).astype(np.float32) / 255.0
        img_5 = img_5.transpose((2, 0, 1)).astype(np.float32) / 255.0
        img_6 = img_6.transpose((2, 0, 1)).astype(np.float32) / 255.0
        img_7 = img_7.transpose((2, 0, 1)).astype(np.float32) / 255.0
        img_8 = img_8.transpose((2, 0, 1)).astype(np.float32) / 255.0

        emb_1 = np.array(1/8).reshape(1, 1, 1).astype(np.float32)
        emb_2 = np.array(2/8).reshape(1, 1, 1).astype(np.float32)
        emb_3 = np.array(3/8).reshape(1, 1, 1).astype(np.float32)
        emb_4 = np.array(4/8).reshape(1, 1, 1).astype(np.float32)
        emb_5 = np.array(5/8).reshape(1, 1, 1).astype(np.float32)
        emb_6 = np.array(6/8).reshape(1, 1, 1).astype(np.float32)
        emb_7 = np.array(7/8).reshape(1, 1, 1).astype(np.float32)

        return img_0, img_1, img_2, img_3, img_4, img_5, img_6, img_7, img_8, emb_1, emb_2, emb_3, emb_4, emb_5, emb_6, emb_7

    def __len__(self):
        return len(self.file_list)

If you have found other Adobe240 test dataset selection, you can report IFRNet's results on your evaluation script. Thanks.

@VongolaWu
Copy link

Hi, may I get the list of your test videos for Adobe240fps datasets?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants