-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatasets.py
94 lines (80 loc) · 3.33 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
from glob import glob
import numpy as np
import cv2
from torch.utils.data import Dataset
def read_ldr(img_path):
img = np.asarray(cv2.imread(img_path, -1)[:, :, ::-1])
img = (img / 2 ** 16).clip(0, 1).astype(np.float32)
return img
def read_hdr(img_path):
img = np.asarray(cv2.imread(img_path, -1)[:, :, ::-1]).astype(np.float32)
return img
def read_expos(txt_path):
expos = np.power(2, np.loadtxt(txt_path) - min(np.loadtxt(txt_path))).astype(np.float32)
return expos
class SIGGRAPH17_Test_Dataset(Dataset):
def __init__(self, dataset_dir):
self.dataset_dir = dataset_dir
sequences = sorted(os.listdir(dataset_dir))
print(len(sequences))
self.img0_list = []
self.img1_list = []
self.img2_list = []
self.gt_list = []
self.expos_list = []
for seq in sequences:
ldr_list = sorted(glob(os.path.join(dataset_dir, seq, '*.tif')))
assert len(ldr_list) == 3
self.img0_list.append(ldr_list[0])
self.img1_list.append(ldr_list[1])
self.img2_list.append(ldr_list[2])
hdr_list = sorted(glob(os.path.join(dataset_dir, seq, '*.hdr')))
assert len(hdr_list) == 1
self.gt_list.append(hdr_list[0])
expo_list = sorted(glob(os.path.join(dataset_dir, seq, '*.txt')))
assert len(expo_list) == 1
self.expos_list.append(expo_list[0])
def __len__(self):
return len(self.gt_list)
def __getitem__(self, idx):
img0 = read_ldr(self.img0_list[idx])
img1 = read_ldr(self.img1_list[idx])
img2 = read_ldr(self.img2_list[idx])
gt = read_hdr(self.gt_list[idx])
expos = read_expos(self.expos_list[idx])
imgs_ldr = [img0.copy(), img1.copy(), img2.copy()]
imgs_lin = []
for i in range(3):
imgs_lin.append((imgs_ldr[i] ** 2.2) / expos[i])
return imgs_lin, imgs_ldr, expos, gt.copy()
class Challenge123_Test_Dataset(Dataset):
def __init__(self, dataset_dir):
self.dataset_dir = dataset_dir
sequences = sorted(os.listdir(dataset_dir))
sequences = sorted(list(set(s[:3] for s in sequences)))
print(len(sequences))
self.img0_list = []
self.img1_list = []
self.img2_list = []
self.gt_list = []
self.expos_list = []
for seq in sequences:
self.img0_list.append(os.path.join(dataset_dir, seq + '_1/ldr_img_1.tif'))
self.img1_list.append(os.path.join(dataset_dir, seq + '_2/ldr_img_2.tif'))
self.img2_list.append(os.path.join(dataset_dir, seq + '_3/ldr_img_3.tif'))
self.gt_list.append(os.path.join(dataset_dir, seq + '_2/hdr_img.hdr'))
self.expos_list.append(os.path.join(dataset_dir, seq + '_2/exposure.txt'))
def __len__(self):
return len(self.gt_list)
def __getitem__(self, idx):
img0 = read_ldr(self.img0_list[idx])
img1 = read_ldr(self.img1_list[idx])
img2 = read_ldr(self.img2_list[idx])
gt = read_hdr(self.gt_list[idx])
expos = read_expos(self.expos_list[idx])
imgs_ldr = [img0.copy(), img1.copy(), img2.copy()]
imgs_lin = []
for i in range(3):
imgs_lin.append((imgs_ldr[i] ** 2.2) / expos[i])
return imgs_lin, imgs_ldr, expos, gt.copy()