forked from OsmosisIncentivesCommittee/OsmoIncentives
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPool.py
117 lines (99 loc) · 6.02 KB
/
Pool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from util import *
import Query
import Params
class Pool:
def __init__(self, pools : Any, pid : int):
pd = Query.load_pool(pid)
vol = Query.load_volume(pid)
self.pools = pools
self.pid = pid
self.liquidity = int(pd[0]["liquidity"])
self.volume = sum([x["value"] for x in vol[-7:]])/7
self.gauge_ids = Query.load_gauge_ids(pid)
self.maturity = self.pools.get_current_share(self.gauge_ids) != 0 and min(4, int(len(vol)/7)) or 0
self.swap_fee = parse_percent(pd[0]["fees"])
self.fees_collected = self.volume * self.swap_fee
external_gauges = Query.load_external_gauges(self.pid)
self.external_per_day = sum([g["daily_value"] for g in external_gauges.values()])
self.assets = [a["symbol"] for a in pd]
self.category = categorize(self.assets)
self.cache : dict[str, Any] = {}
#cap swap fees collected at a multiple of avg per unit tvl to disincentivize wash trading
def capped_fees(self) -> int:
return min(self.fees_collected, Params.swap_fee_cap * self.pools.avg_fee_apr(self.category) * self.liquidity)
#share of fees collected by this pool relative to category total
def fee_share(self) -> float:
return self.capped_fees() / self.pools.total_capped_fees(self.category)
#add capped share of external $ per day to capped fees to calculate adjusted revenue
def adjusted_revenue(self) -> int:
if "OSMO" in self.category:
#Matched but not incentivized
if self.pid in Params.matched_pool_ids and self.pid not in Params.incentivized_pool_ids:
return min(self.external_per_day,self.capped_fees())
#Matched and incentivized
elif self.pid in Params.matched_pool_ids:
return self.capped_fees()+min(self.external_per_day,self.capped_fees())
#Incentivized
else:
return self.capped_fees()
else:
#Matched but not incentivized
if self.pid in Params.matched_pool_ids and self.pid not in Params.incentivized_pool_ids:
return min(self.external_per_day*Params.match_multiple_cap_non_osmo,Params.match_fee_cap_non_osmo*self.capped_fees())
#Matched and incentivized
elif self.pid in Params.matched_pool_ids:
return self.capped_fees()+min(self.external_per_day*Params.match_multiple_cap_non_osmo,Params.match_fee_cap_non_osmo*self.capped_fees())
#Incentivized
else:
return self.capped_fees()
#share of adjusted revenue collected by the pool relative to category total
def adjusted_revenue_share(self) -> float:
return self.adjusted_revenue() / self.pools.total_adjusted_revenue_for(self.category)
#cap adjusted revenue share at 1+MMC of fee share (currently 2x original share)
def match_capped_share(self) -> float:
return min((1+Params.match_multiple_cap)*self.fee_share(), self.adjusted_revenue_share())
#translate category share to overall incentives share
def target_share(self) -> float:
# match at least the minimum and at most the maximum specified for this pool
if self.pid in Params.Maximums:
return min(Params.Maximums.get(self.pid,0),max(Params.Minimums.get(self.pid,0), Params.Category_weights[self.category] * self.match_capped_share())) * Params.total_incentive_share
return max(Params.Minimums.get(self.pid,0), Params.Category_weights[self.category] * self.match_capped_share()) * Params.total_incentive_share
#Compute the imbbalance as the ratio of the target share as compared to the current share
# with 0 current share being mapped to an imbalance of 0%, to avoid division by zero
def imbalance_(self) -> float:
cs = self.pools.get_current_share(self.gauge_ids)
if cs > 0:
return self.target_share() / cs
else:
return 0
def imbalance(self):
return cached_call(self.cache, "imbalance", self.imbalance_)
#Compute the adjustment from the current share, to the target share
# limited to be no more than the current adjustment scale
# ie, bounding imbalance between 0.75 and 1.25
def unnorm_scale_limited_target_(self) -> float:
return self.pools.get_current_share(self.gauge_ids) * max(1 - Params.adjust_scale, min(1 + Params.adjust_scale, self.imbalance()))
def unnorm_scale_limited_target(self) -> float:
return cached_call(self.cache, "unnorm_scale_limited_target", self.unnorm_scale_limited_target_)
#Then renormalize again so that total scale limited target is 99% of incentives
def scale_limited_target_(self) -> float:
return self.unnorm_scale_limited_target() * self.pools.scale_limit_renormalization_factor()
def scale_limited_target(self) -> float:
return cached_call(self.cache, "scale_limited_target", self.scale_limited_target_)
#Compute the adjusted share, as the linear average of the target share and the scale limited target
# based on the maturity level of the pool as compared to the entry window
# ie linearly shift from entirely the target, to entirely the scale limited target over 4 weeks
def unnorm_adjusted_share_(self) -> float:
if self.pid in Params.MaturityExceptions:
return self.target_share()
else:
scale_limit_factor = min(1, self.maturity / Params.entry_window)
target_factor = max(0, 1 - self.maturity / Params.entry_window)
return (self.scale_limited_target() * scale_limit_factor) + (self.target_share() * target_factor)
def unnorm_adjusted_share(self) -> float:
return cached_call(self.cache, "unnorm_adjusted_share", self.unnorm_adjusted_share_)
#Then we apply a final renormalization so that again the total of all adjsuted shares is 99%
def adjusted_share_(self) -> float:
return self.unnorm_adjusted_share() * self.pools.adjustment_renormalization_factor()
def adjusted_share(self) -> float:
return cached_call(self.cache, "adjusted_share", self.adjusted_share_)