-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathyolov7.launch
27 lines (27 loc) · 1.68 KB
/
yolov7.launch
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
<launch>
<node pkg="yolov7_ros" type="detect_ros.py" name="detect" output="screen"
ns="yolov7">
<!-- Download the official weights from the original repo -->
<param name="weights_path" type="str"
value="/path/to/weights.pt"/>
<!-- Path to a class_labels.txt file containing your desired class labels. The i-th entry corresponds to the i-th class id. For example, in coco class label 0 corresponds to 'person'. Files for the coco and berkeley deep drive datasets are provided in the 'class_labels/' directory. If you leave it empty then no class labels are visualized.-->
<param name="classes_path" type="str" value="/path/to/class_labels/your_labels.txt" />
<!-- topic name to subscribe to -->
<param name="img_topic" type="str" value="/raw_image" />
<!-- topic name for the detection output -->
<param name="out_topic" type="str" value="yolov7" />
<!-- confidence threshold -->
<param name="conf_thresh" type="double" value="0.35" />
<!-- intersection over union threshold -->
<param name="iou_thresh" type="double" value="0.45" />
<!-- queue size for publishing -->
<param name="queue_size" type="int" value="1" />
<!-- image size to which to resize each input image before feeding into the
network (the final output is rescaled to the original image size) -->
<param name="img_size" type="int" value="640" />
<!-- flag whether to also publish image with the visualized detections -->
<param name="visualize" type="bool" value="true" />
<!-- 'cuda' or 'cpu' -->
<param name="device" type="str" value="cuda" />
</node>
</launch>