-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathdataloaderraw.py
139 lines (110 loc) · 4.47 KB
/
dataloaderraw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import h5py
import os
import numpy as np
import random
import torch
import skimage
import skimage.io
import scipy.misc
from torchvision import transforms as trn
preprocess = trn.Compose([
#trn.ToTensor(),
trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
from misc.resnet_utils import myResnet
import misc.resnet
class DataLoaderRaw():
def __init__(self, opt):
self.opt = opt
self.coco_json = opt.get('coco_json', '')
self.folder_path = opt.get('folder_path', '')
self.batch_size = opt.get('batch_size', 1)
self.seq_per_img = 1
# Load resnet
self.cnn_model = opt.get('cnn_model', 'resnet101')
self.my_resnet = getattr(misc.resnet, self.cnn_model)()
self.my_resnet.load_state_dict(torch.load('./data/imagenet_weights/'+self.cnn_model+'.pth'))
self.my_resnet = myResnet(self.my_resnet)
self.my_resnet.cuda()
self.my_resnet.eval()
# load the json file which contains additional information about the dataset
print('DataLoaderRaw loading images from folder: ', self.folder_path)
self.files = []
self.ids = []
print(len(self.coco_json))
if len(self.coco_json) > 0:
print('reading from ' + opt.coco_json)
# read in filenames from the coco-style json file
self.coco_annotation = json.load(open(self.coco_json))
for k,v in enumerate(self.coco_annotation['images']):
fullpath = os.path.join(self.folder_path, v['file_name'])
self.files.append(fullpath)
self.ids.append(v['id'])
else:
# read in all the filenames from the folder
print('listing all images in directory ' + self.folder_path)
def isImage(f):
supportedExt = ['.jpg','.JPG','.jpeg','.JPEG','.png','.PNG','.ppm','.PPM']
for ext in supportedExt:
start_idx = f.rfind(ext)
if start_idx >= 0 and start_idx + len(ext) == len(f):
return True
return False
n = 1
for root, dirs, files in os.walk(self.folder_path, topdown=False):
for file in files:
fullpath = os.path.join(self.folder_path, file)
if isImage(fullpath):
self.files.append(fullpath)
self.ids.append(str(n)) # just order them sequentially
n = n + 1
self.N = len(self.files)
print('DataLoaderRaw found ', self.N, ' images')
self.iterator = 0
def get_batch(self, split, batch_size=None):
batch_size = batch_size or self.batch_size
# pick an index of the datapoint to load next
fc_batch = np.ndarray((batch_size, 2048), dtype = 'float32')
att_batch = np.ndarray((batch_size, 14, 14, 2048), dtype = 'float32')
max_index = self.N
wrapped = False
infos = []
for i in range(batch_size):
ri = self.iterator
ri_next = ri + 1
if ri_next >= max_index:
ri_next = 0
wrapped = True
# wrap back around
self.iterator = ri_next
img = skimage.io.imread(self.files[ri])
if len(img.shape) == 2:
img = img[:,:,np.newaxis]
img = np.concatenate((img, img, img), axis=2)
img = img.astype('float32')/255.0
img = torch.from_numpy(img.transpose([2,0,1])).cuda()
img = preprocess(img)
with torch.no_grad():
tmp_fc, tmp_att = self.my_resnet(img)
fc_batch[i] = tmp_fc.data.cpu().float().numpy()
att_batch[i] = tmp_att.data.cpu().float().numpy()
info_struct = {}
info_struct['id'] = self.ids[ri]
info_struct['file_path'] = self.files[ri]
infos.append(info_struct)
data = {}
data['fc_feats'] = fc_batch
data['att_feats'] = att_batch
data['bounds'] = {'it_pos_now': self.iterator, 'it_max': self.N, 'wrapped': wrapped}
data['infos'] = infos
return data
def reset_iterator(self, split):
self.iterator = 0
def get_vocab_size(self):
return len(self.ix_to_word)
def get_vocab(self):
return self.ix_to_word