-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
396 lines (319 loc) · 17.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import ast
import logging
import sys
from shutil import copyfile
from timeit import default_timer as timer
from config import load_parameters
from data_engine.prepare_data import build_dataset
from keras_wrapper.cnn_model import loadModel
from keras_wrapper.extra import evaluation, read_write
from keras_wrapper.extra.callbacks import PrintPerformanceMetricOnEpochEndOrEachNUpdates
from model_zoo import Text_Classification_Model
from utils.semisupervised_selection import process_prediction_probs, update_config_params, \
process_files_binary_classification
logging.basicConfig(level=logging.DEBUG, format='[%(asctime)s] %(message)s', datefmt='%d/%m/%Y %H:%M:%S')
logger = logging.getLogger(__name__)
def train_model(params):
"""
Main function
"""
if params['RELOAD'] > 0:
logging.info('Resuming training.')
check_params(params)
########### Load data
if params['BINARY_SELECTION']:
params['POSITIVE_FILENAME'] = params['DATA_ROOT_PATH'] + '/' + params['POSITIVE_FILENAME']
params['NEGATIVE_FILENAME'] = params['DATA_ROOT_PATH'] + '/' + params['NEGATIVE_FILENAME']
params = process_files_binary_classification(params)
dataset = build_dataset(params)
params['INPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[params['INPUTS_IDS_DATASET'][0]]
###########
########### Build model
if params['RELOAD'] == 0: # build new model
text_class_model = Text_Classification_Model(params, type=params['MODEL_TYPE'], verbose=params['VERBOSE'],
model_name=params['MODEL_NAME'], vocabularies=dataset.vocabulary,
store_path=params['STORE_PATH'])
# Define the inputs and outputs mapping from our Dataset instance to our model
inputMapping = dict()
for i, id_in in enumerate(params['INPUTS_IDS_DATASET']):
pos_source = dataset.ids_inputs.index(id_in)
id_dest = text_class_model.ids_inputs[i]
inputMapping[id_dest] = pos_source
text_class_model.setInputsMapping(inputMapping)
outputMapping = dict()
for i, id_out in enumerate(params['OUTPUTS_IDS_DATASET']):
pos_target = dataset.ids_outputs.index(id_out)
id_dest = text_class_model.ids_outputs[i]
outputMapping[id_dest] = pos_target
text_class_model.setOutputsMapping(outputMapping)
else: # resume from previously trained model
text_class_model = loadModel(params['STORE_PATH'], params['RELOAD'])
text_class_model.setOptimizer()
###########
########### Callbacks
callbacks = buildCallbacks(params, text_class_model, dataset)
###########
########### Training
total_start_time = timer()
logger.debug('Starting training!')
training_params = {'n_epochs': params['MAX_EPOCH'],
'batch_size': params['BATCH_SIZE'],
'homogeneous_batches': params['HOMOGENEOUS_BATCHES'],
'shuffle': True,
'epochs_for_save': params['EPOCHS_FOR_SAVE'],
'verbose': params['VERBOSE'],
'eval_on_sets': params['EVAL_ON_SETS_KERAS'],
'n_parallel_loaders': params['PARALLEL_LOADERS'],
'extra_callbacks': callbacks,
'reload_epoch': params['RELOAD'],
'data_augmentation': params.get('DATA_AUGMENTATION', False)}
text_class_model.trainNet(dataset, training_params)
total_end_time = timer()
time_difference = total_end_time - total_start_time
logging.info('In total is {0:.2f}s = {1:.2f}m'.format(time_difference, time_difference / 60.0))
###########
def apply_Clas_model(params):
"""
Function for using a previously trained model for sampling.
"""
########### Load data
dataset = build_dataset(params)
params['INPUT_SCR_VOCABULARY_SIZE'] = dataset.vocabulary_len[params['INPUTS_IDS_DATASET'][0]]
params['OUTPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[params['OUTPUTS_IDS_DATASET'][0]]
###########
########### Load model
text_class_model = loadModel(params['STORE_PATH'], params['RELOAD'])
text_class_model.setOptimizer()
###########
########### Apply sampling
extra_vars = dict()
extra_vars['tokenize_f'] = eval('dataset.' + params['TOKENIZATION_METHOD'])
for s in params["EVAL_ON_SETS"]:
# Apply model predictions
params_prediction = {'batch_size': params['BATCH_SIZE'],
'n_parallel_loaders': params['PARALLEL_LOADERS'], 'predict_on_sets': [s]}
predictions = text_class_model.predictNet(dataset, params_prediction)[s]
# Store result
filepath = text_class_model.model_path + '/' + s + '.pred' # results file
if params['SAMPLING_SAVE_MODE'] == 'list':
read_write.list2file(filepath, predictions)
else:
raise Exception, 'Only "list" is allowed in "SAMPLING_SAVE_MODE"'
# Evaluate if any metric in params['METRICS']
for metric in params['METRICS']:
logging.info('Evaluating on metric ' + metric)
filepath = text_class_model.model_path + '/' + s + '_sampling.' + metric # results file
# Evaluate on the chosen metric
extra_vars[s] = dict()
extra_vars[s]['references'] = dataset.extra_variables[s][params['OUTPUTS_IDS_DATASET'][0]]
metrics = evaluation.select[metric](
pred_list=predictions,
verbose=1,
extra_vars=extra_vars,
split=s)
# Print results to file
with open(filepath, 'w') as f:
header = ''
line = ''
for metric_ in sorted(metrics):
value = metrics[metric_]
header += metric_ + ','
line += str(value) + ','
f.write(header + '\n')
f.write(line + '\n')
logging.info('Done evaluating on metric ' + metric)
def semisupervised_selection(params):
check_params(params)
initial_pos_filename = params['POSITIVE_FILENAME']
initial_neg_filename = params['NEGATIVE_FILENAME']
initial_pool_filename = params['POOL_FILENAME']
pos_filename = params['DATA_ROOT_PATH'] + '/' + initial_pos_filename
in_domain_file_src = open(pos_filename + '.' + params['SRC_LAN'], 'r')
in_domain_src = in_domain_file_src.readlines()
in_domain_file_src.close()
if params['BILINGUAL_SELECTION']:
in_domain_file_trg = open(pos_filename + '.' + params['TRG_LAN'], 'r')
in_domain_trg = in_domain_file_trg.readlines()
in_domain_file_trg.close()
neg_filename = params['DATA_ROOT_PATH'] + '/' + initial_neg_filename
pool_filename = params['DATA_ROOT_PATH'] + '/' + initial_pool_filename
for i in range(params['N_ITER']):
print "------------------ Starting iteration", i, "------------------"
new_pos_filename = params['DEST_ROOT_PATH'] + '/' + initial_pos_filename + '_' + str(i)
new_pos_filename_tmp = params['DEST_ROOT_PATH'] + '/' + initial_pos_filename + '_' + 'temp'
if params['DEBUG']:
new_neg_filename_tmp = params['DEST_ROOT_PATH'] + '/' + initial_neg_filename + '_' + 'temp'
new_neg_filename = params['DEST_ROOT_PATH'] + '/' + initial_neg_filename + '_' + str(i)
new_pool_filename = params['DEST_ROOT_PATH'] + '/' + initial_pool_filename + '_' + str(i)
if i > 0:
copyfile(pos_filename + '.' + params['SRC_LAN'], new_pos_filename_tmp + '.' + params['SRC_LAN'])
copyfile(pos_filename + '.' + params['SRC_LAN'], new_pos_filename + '.' + params['SRC_LAN'])
copyfile(pos_filename + '.' + params['TRG_LAN'], new_pos_filename + '.' + params['TRG_LAN'])
if params['BILINGUAL_SELECTION']:
copyfile(pos_filename + '.' + params['TRG_LAN'], new_pos_filename_tmp + '.' + params['TRG_LAN'])
with open(new_pos_filename_tmp + '.' + params['SRC_LAN'], "a") as f:
for line in in_domain_src:
f.write(line)
if params['BILINGUAL_SELECTION']:
with open(new_pos_filename_tmp + '.' + params['TRG_LAN'], "a") as f:
for line in in_domain_trg:
f.write(line)
copyfile(neg_filename + '.' + params['SRC_LAN'], new_neg_filename + '.' + params['SRC_LAN'])
if params['BILINGUAL_SELECTION'] or params['DEBUG']:
copyfile(neg_filename + '.' + params['TRG_LAN'], new_neg_filename + '.' + params['TRG_LAN'])
copyfile(pool_filename + '.' + params['SRC_LAN'], new_pool_filename + '.' + params['SRC_LAN'])
copyfile(pool_filename + '.' + params['TRG_LAN'], new_pool_filename + '.' + params['TRG_LAN'])
params = update_config_params(params,
new_pos_filename_tmp,
new_neg_filename,
new_pool_filename)
params = process_files_binary_classification(params, i=i)
########### Load data
dataset = build_dataset(params)
params['INPUT_SRC_VOCABULARY_SIZE'] = dataset.vocabulary_len[params['INPUTS_IDS_DATASET'][0]]
if params['BILINGUAL_SELECTION']:
params['INPUT_TRG_VOCABULARY_SIZE'] = dataset.vocabulary_len[params['INPUTS_IDS_DATASET'][1]]
###########
########### Build model
text_class_model = Text_Classification_Model(params,
type=params['MODEL_TYPE'],
model_name=params['MODEL_NAME'],
vocabularies=dataset.vocabulary,
store_path=params['STORE_PATH'],
verbose=params['VERBOSE'])
# Define the inputs and outputs mapping from our Dataset instance to our model
inputMapping = dict()
for i, id_in in enumerate(params['INPUTS_IDS_DATASET']):
pos_source = dataset.ids_inputs.index(id_in)
id_dest = text_class_model.ids_inputs[i]
inputMapping[id_dest] = pos_source
text_class_model.setInputsMapping(inputMapping)
outputMapping = dict()
for i, id_out in enumerate(params['OUTPUTS_IDS_DATASET']):
pos_target = dataset.ids_outputs.index(id_out)
id_dest = text_class_model.ids_outputs[i]
outputMapping[id_dest] = pos_target
text_class_model.setOutputsMapping(outputMapping)
########### Callbacks
callbacks = buildCallbacks(params, text_class_model, dataset)
###########
########### Training
total_start_time = timer()
logger.debug('Starting training!')
training_params = {'n_epochs': params['MAX_EPOCH'], 'batch_size': params['BATCH_SIZE'],
'homogeneous_batches': params['HOMOGENEOUS_BATCHES'],
'shuffle': False if 'train' in params['EVAL_ON_SETS'] else True,
'epochs_for_save': params['EPOCHS_FOR_SAVE'],
'verbose': params['VERBOSE'],
'eval_on_sets': params['EVAL_ON_SETS_KERAS'],
'n_parallel_loaders': params['PARALLEL_LOADERS'],
'extra_callbacks': callbacks, 'reload_epoch': params['RELOAD'],
'data_augmentation': params['DATA_AUGMENTATION']}
text_class_model.trainNet(dataset, training_params)
total_end_time = timer()
time_difference = total_end_time - total_start_time
logging.info('In total is {0:.2f}s = {1:.2f}m'.format(time_difference, time_difference / 60.0))
###########
# Apply model predictions
params_prediction = {'batch_size': params['BATCH_SIZE'],
'n_parallel_loaders': params['PARALLEL_LOADERS'],
'predict_on_sets': ['test']}
prediction_probs = text_class_model.predictNet(dataset, params_prediction)['test']
positive_lines_src, positive_lines_trg, negative_lines_src, negative_lines_trg, neutral_lines_src, neutral_lines_trg = \
process_prediction_probs(prediction_probs, params['INSTANCES_TO_ADD'],
pool_filename + '.' + params['SRC_LAN'],
pool_filename + '.' + params['TRG_LAN'],
verbose=params['VERBOSE'])
print "Adding", len(positive_lines_src), "positive lines"
print "Positive sample:", positive_lines_src[0], "---", positive_lines_trg[0]
print "Adding", len(negative_lines_trg), "negative lines"
print "Negative sample:", negative_lines_src[0], "---", negative_lines_trg[0]
print "Adding", len(neutral_lines_src), "neutral lines"
print "Neutral sample:", neutral_lines_src[0], "---", neutral_lines_trg[0]
new_pos_file_src = open(new_pos_filename + '.' + params['SRC_LAN'], 'a')
new_pos_file_trg = open(new_pos_filename + '.' + params['TRG_LAN'], 'a')
new_neg_file_src = open(new_neg_filename + '.' + params['SRC_LAN'], 'a')
new_neg_file_trg = open(new_neg_filename + '.' + params['TRG_LAN'], 'a')
new_pool_file_src = open(new_pool_filename + '.' + params['SRC_LAN'], 'w')
new_pool_file_trg = open(new_pool_filename + '.' + params['TRG_LAN'], 'w')
for line in positive_lines_src:
new_pos_file_src.write(line)
for line in positive_lines_trg:
new_pos_file_trg.write(line)
for line in negative_lines_src:
new_neg_file_src.write(line)
for line in negative_lines_trg:
new_neg_file_trg.write(line)
for line in neutral_lines_src:
new_pool_file_src.write(line)
for line in neutral_lines_trg:
new_pool_file_trg.write(line)
new_pos_file_src.close()
new_pos_file_trg.close()
new_neg_file_src.close()
new_neg_file_trg.close()
new_pool_file_src.close()
new_pool_file_trg.close()
pos_filename = new_pos_filename
neg_filename = new_neg_filename
pool_filename = new_pool_filename
if len(neutral_lines_src) < 2 * params['INSTANCES_TO_ADD']:
logger.warning("We got out of neutral sentences (from the pool) to classify!. Stopping the process.")
break
def buildCallbacks(params, model, dataset):
"""
Builds the selected set of callbacks run during the training of the model
"""
callbacks = []
if params['METRICS']:
# Evaluate training
extra_vars = {'n_parallel_loaders': params['PARALLEL_LOADERS']}
for s in params['EVAL_ON_SETS']:
extra_vars[s] = dict()
extra_vars[s]['references'] = dataset.extra_variables[s][params['OUTPUTS_IDS_DATASET'][0]]
if dataset.dic_classes.get(params['OUTPUTS_IDS_DATASET'][0]):
extra_vars['n_classes'] = len(dataset.dic_classes[params['OUTPUTS_IDS_DATASET'][0]])
if params['EVAL_EACH_EPOCHS']:
callback_metric = PrintPerformanceMetricOnEpochEndOrEachNUpdates(model,
dataset,
gt_id=params['OUTPUTS_IDS_DATASET'][0],
metric_name=params['METRICS'],
set_name=params['EVAL_ON_SETS'],
batch_size=params['BATCH_SIZE'],
each_n_epochs=params['EVAL_EACH'],
extra_vars=extra_vars,
reload_epoch=params['RELOAD'],
save_path=model.model_path,
start_eval_on_epoch=params[
'START_EVAL_ON_EPOCH'],
write_samples=True,
write_type=params['SAMPLING_SAVE_MODE'],
verbose=params['VERBOSE'])
callbacks.append(callback_metric)
return callbacks
def check_params(params):
if 'Glove' in params['MODEL_TYPE'] and params['GLOVE_VECTORS'] is None:
logger.warning("You set a model that uses pretrained word vectors but you didn't specify a vector file."
"We'll train WITHOUT pretrained embeddings!")
if params['MODE'] == 'semisupervised-selection' and not params['BINARY_SELECTION']:
raise AttributeError, 'When MODE = %s, BINARY_SELECTION must be set to True'
if __name__ == "__main__":
params = load_parameters()
try:
for arg in sys.argv[1:]:
k, v = arg.split('=')
params[k] = ast.literal_eval(v)
except:
print 'Overwritten arguments must have the form key=Value'
exit(1)
read_write.clean_dir(params['DEST_ROOT_PATH'])
if params['MODE'] == 'training':
logging.info('Running training.')
train_model(params)
elif params['MODE'] == 'sampling':
logging.info('Running sampling.')
apply_Clas_model(params)
elif params['MODE'] == 'semisupervised-selection':
logging.info('Running semisupervised selection.')
semisupervised_selection(params)
logging.info('Done!')