-
Notifications
You must be signed in to change notification settings - Fork 240
/
Copy pathvptree.h
272 lines (229 loc) · 9.45 KB
/
vptree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*
*
* Copyright (c) 2014, Laurens van der Maaten (Delft University of Technology)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the Delft University of Technology.
* 4. Neither the name of the Delft University of Technology nor the names of
* its contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY LAURENS VAN DER MAATEN ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL LAURENS VAN DER MAATEN BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
*/
/* This code was adopted with minor modifications from Steve Hanov's great tutorial at http://stevehanov.ca/blog/index.php?id=130 */
#include <stdlib.h>
#include <algorithm>
#include <vector>
#include <stdio.h>
#include <queue>
#include <limits>
#include <cmath>
#ifndef VPTREE_H
#define VPTREE_H
class DataPoint
{
int _ind;
public:
double* _x;
int _D;
DataPoint() {
_D = 1;
_ind = -1;
_x = NULL;
}
DataPoint(int D, int ind, double* x) {
_D = D;
_ind = ind;
_x = (double*) malloc(_D * sizeof(double));
for(int d = 0; d < _D; d++) _x[d] = x[d];
}
DataPoint(const DataPoint& other) { // this makes a deep copy -- should not free anything
if(this != &other) {
_D = other.dimensionality();
_ind = other.index();
_x = (double*) malloc(_D * sizeof(double));
for(int d = 0; d < _D; d++) _x[d] = other.x(d);
}
}
~DataPoint() { if(_x != NULL) free(_x); }
DataPoint& operator= (const DataPoint& other) { // asignment should free old object
if(this != &other) {
if(_x != NULL) free(_x);
_D = other.dimensionality();
_ind = other.index();
_x = (double*) malloc(_D * sizeof(double));
for(int d = 0; d < _D; d++) _x[d] = other.x(d);
}
return *this;
}
int index() const { return _ind; }
int dimensionality() const { return _D; }
double x(int d) const { return _x[d]; }
};
double euclidean_distance(const DataPoint &t1, const DataPoint &t2) {
double dd = .0;
double* x1 = t1._x;
double* x2 = t2._x;
double diff;
for(int d = 0; d < t1._D; d++) {
diff = (x1[d] - x2[d]);
dd += diff * diff;
}
return sqrt(dd);
}
template<typename T, double (*distance)( const T&, const T& )>
class VpTree
{
public:
// Default constructor
VpTree() : _root(0) {}
// Destructor
~VpTree() {
delete _root;
}
// Function to create a new VpTree from data
void create(const std::vector<T>& items) {
delete _root;
_items = items;
_root = buildFromPoints(0, items.size());
}
// Function that uses the tree to find the k nearest neighbors of target
void search(const T& target, int k, std::vector<T>* results, std::vector<double>* distances)
{
// Use a priority queue to store intermediate results on
std::priority_queue<HeapItem> heap;
// Variable that tracks the distance to the farthest point in our results
_tau = DBL_MAX;
// Perform the search
search(_root, target, k, heap);
// Gather final results
results->clear(); distances->clear();
while(!heap.empty()) {
results->push_back(_items[heap.top().index]);
distances->push_back(heap.top().dist);
heap.pop();
}
// Results are in reverse order
std::reverse(results->begin(), results->end());
std::reverse(distances->begin(), distances->end());
}
private:
std::vector<T> _items;
double _tau;
// Single node of a VP tree (has a point and radius; left children are closer to point than the radius)
struct Node
{
int index; // index of point in node
double threshold; // radius(?)
Node* left; // points closer by than threshold
Node* right; // points farther away than threshold
Node() :
index(0), threshold(0.), left(0), right(0) {}
~Node() { // destructor
delete left;
delete right;
}
}* _root;
// An item on the intermediate result queue
struct HeapItem {
HeapItem( int index, double dist) :
index(index), dist(dist) {}
int index;
double dist;
bool operator<(const HeapItem& o) const {
return dist < o.dist;
}
};
// Distance comparator for use in std::nth_element
struct DistanceComparator
{
const T& item;
DistanceComparator(const T& item) : item(item) {}
bool operator()(const T& a, const T& b) {
return distance(item, a) < distance(item, b);
}
};
// Function that (recursively) fills the tree
Node* buildFromPoints( int lower, int upper )
{
if (upper == lower) { // indicates that we're done here!
return NULL;
}
// Lower index is center of current node
Node* node = new Node();
node->index = lower;
if (upper - lower > 1) { // if we did not arrive at leaf yet
// Choose an arbitrary point and move it to the start
int i = (int) ((double)rand() / RAND_MAX * (upper - lower - 1)) + lower;
std::swap(_items[lower], _items[i]);
// Partition around the median distance
int median = (upper + lower) / 2;
std::nth_element(_items.begin() + lower + 1,
_items.begin() + median,
_items.begin() + upper,
DistanceComparator(_items[lower]));
// Threshold of the new node will be the distance to the median
node->threshold = distance(_items[lower], _items[median]);
// Recursively build tree
node->index = lower;
node->left = buildFromPoints(lower + 1, median);
node->right = buildFromPoints(median, upper);
}
// Return result
return node;
}
// Helper function that searches the tree
void search(Node* node, const T& target, int k, std::priority_queue<HeapItem>& heap)
{
if(node == NULL) return; // indicates that we're done here
// Compute distance between target and current node
double dist = distance(_items[node->index], target);
// If current node within radius tau
if(dist < _tau) {
if(heap.size() == k) heap.pop(); // remove furthest node from result list (if we already have k results)
heap.push(HeapItem(node->index, dist)); // add current node to result list
if(heap.size() == k) _tau = heap.top().dist; // update value of tau (farthest point in result list)
}
// Return if we arrived at a leaf
if(node->left == NULL && node->right == NULL) {
return;
}
// If the target lies within the radius of ball
if(dist < node->threshold) {
if(dist - _tau <= node->threshold) { // if there can still be neighbors inside the ball, recursively search left child first
search(node->left, target, k, heap);
}
if(dist + _tau >= node->threshold) { // if there can still be neighbors outside the ball, recursively search right child
search(node->right, target, k, heap);
}
// If the target lies outsize the radius of the ball
} else {
if(dist + _tau >= node->threshold) { // if there can still be neighbors outside the ball, recursively search right child first
search(node->right, target, k, heap);
}
if (dist - _tau <= node->threshold) { // if there can still be neighbors inside the ball, recursively search left child
search(node->left, target, k, heap);
}
}
}
};
#endif