Skip to content

Latest commit

 

History

History
33 lines (29 loc) · 1.18 KB

readme-for-group-A.md

File metadata and controls

33 lines (29 loc) · 1.18 KB

Quick Guide for Pesto Model Training

This repo comes with MIR-1k downloaded inside data folder.

But in case you want to download the data by yourself, here's the tutorial:

On Mac:

  1. Create a folder named data in project root dir: mkdir ./data
  2. Download MIR-1k from kaggle and put it inside this folder.
  3. Generate csv file:
    find MIR-1K/Vocals -name "*.wav" | sort > mir-1k.csv
    find MIR-1K/PitchLabel -name "*.pv" | sort > mir-1k_annot.csv
  4. Start training!
    python src/train.py data=mir-1k logger=csv
    • Optionally, on mac you may add trainer=mps or trainer=cpu

On Windows

  1. Create a folder named data in project root dir: mkdir ./data
  2. Download MIR-1k from kaggle and put it inside this folder.
  3. Create training data csv files:
    cd data
    Get-ChildItem -Recurse -Filter "Wavfile\*.wav" | Sort-Object -Property Name | Select-Object -ExpandProperty FullName > "..\mir-1k.csv"
    Get-ChildItem -Recurse -Filter "PitchLabel\*.pv" | Sort-Object -Property Name | Select-Object -ExpandProperty FullName > "..\mir-1k_annot.csv"   
  4. Start training!
    python src/train.py data=mir-1k logger=csv