-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinternlm_chat_7b_qlora_oasst1_e3_copy.py
167 lines (167 loc) · 5.64 KB
/
internlm_chat_7b_qlora_oasst1_e3_copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
SYSTEM = ''
accumulative_counts = 16
batch_size = 1
betas = (
0.9,
0.999,
)
custom_hooks = [
dict(
tokenizer=dict(
padding_side='right',
pretrained_model_name_or_path='./internlm-chat-7b',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained'),
type='xtuner.engine.DatasetInfoHook'),
dict(
evaluation_inputs=[
'根据形影这个关键词给我写一首诗',
'根据岩扉这个关键词写一首古诗',
],
every_n_iters=500,
prompt_template='xtuner.utils.PROMPT_TEMPLATE.internlm_chat',
system='',
tokenizer=dict(
padding_side='right',
pretrained_model_name_or_path='./internlm-chat-7b',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained'),
type='xtuner.engine.EvaluateChatHook'),
]
data_path = 'tran_dataset_0.json'
dataloader_num_workers = 0
default_hooks = dict(
checkpoint=dict(interval=1, type='mmengine.hooks.CheckpointHook'),
logger=dict(interval=10, type='mmengine.hooks.LoggerHook'),
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
timer=dict(type='mmengine.hooks.IterTimerHook'))
env_cfg = dict(
cudnn_benchmark=False,
dist_cfg=dict(backend='nccl'),
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
evaluation_freq = 500
evaluation_inputs = [
'根据形影这个关键词给我写一首诗',
'根据岩扉这个关键词写一首古诗',
]
launcher = 'none'
load_from = None
log_level = 'INFO'
lr = 0.0002
max_epochs = 1
max_length = 2048
max_norm = 1
model = dict(
llm=dict(
pretrained_model_name_or_path='./internlm-chat-7b',
quantization_config=dict(
bnb_4bit_compute_dtype='torch.float16',
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
llm_int8_has_fp16_weight=False,
llm_int8_threshold=6.0,
load_in_4bit=True,
load_in_8bit=False,
type='transformers.BitsAndBytesConfig'),
torch_dtype='torch.float16',
trust_remote_code=True,
type='transformers.AutoModelForCausalLM.from_pretrained'),
lora=dict(
bias='none',
lora_alpha=16,
lora_dropout=0.1,
r=64,
task_type='CAUSAL_LM',
type='peft.LoraConfig'),
type='xtuner.model.SupervisedFinetune')
optim_type = 'bitsandbytes.optim.PagedAdamW32bit'
optim_wrapper = dict(
optimizer=dict(
betas=(
0.9,
0.999,
),
lr=0.0002,
type='bitsandbytes.optim.PagedAdamW32bit',
weight_decay=0),
type='DeepSpeedOptimWrapper')
pack_to_max_length = True
param_scheduler = dict(
T_max=1,
by_epoch=True,
convert_to_iter_based=True,
eta_min=0.0,
type='mmengine.optim.CosineAnnealingLR')
pretrained_model_name_or_path = './internlm-chat-7b'
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm_chat'
randomness = dict(deterministic=False, seed=None)
resume = False
runner_type = 'FlexibleRunner'
strategy = dict(
config=dict(
bf16=dict(enabled=True),
fp16=dict(enabled=False, initial_scale_power=16),
gradient_accumulation_steps='auto',
gradient_clipping='auto',
train_micro_batch_size_per_gpu='auto',
zero_allow_untested_optimizer=True,
zero_force_ds_cpu_optimizer=False,
zero_optimization=dict(overlap_comm=True, stage=2)),
exclude_frozen_parameters=True,
gradient_accumulation_steps=16,
gradient_clipping=1,
train_micro_batch_size_per_gpu=1,
type='DeepSpeedStrategy')
tokenizer = dict(
padding_side='right',
pretrained_model_name_or_path='./internlm-chat-7b',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained')
train_cfg = dict(by_epoch=True, max_epochs=1, val_interval=1)
train_dataloader = dict(
batch_size=1,
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
dataset=dict(
dataset=dict(
data_files=dict(train='tran_dataset_0.json'),
path='json',
type='datasets.load_dataset'),
dataset_map_fn=None,
max_length=2048,
pack_to_max_length=True,
remove_unused_columns=True,
shuffle_before_pack=True,
template_map_fn=dict(
template='xtuner.utils.PROMPT_TEMPLATE.internlm_chat',
type='xtuner.dataset.map_fns.template_map_fn_factory'),
tokenizer=dict(
padding_side='right',
pretrained_model_name_or_path='./internlm-chat-7b',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained'),
type='xtuner.dataset.process_hf_dataset'),
num_workers=0,
sampler=dict(shuffle=True, type='mmengine.dataset.DefaultSampler'))
train_dataset = dict(
dataset=dict(
data_files=dict(train='tran_dataset_0.json'),
path='json',
type='datasets.load_dataset'),
dataset_map_fn=None,
max_length=2048,
pack_to_max_length=True,
remove_unused_columns=True,
shuffle_before_pack=True,
template_map_fn=dict(
template='xtuner.utils.PROMPT_TEMPLATE.internlm_chat',
type='xtuner.dataset.map_fns.template_map_fn_factory'),
tokenizer=dict(
padding_side='right',
pretrained_model_name_or_path='./internlm-chat-7b',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained'),
type='xtuner.dataset.process_hf_dataset')
visualizer = None
weight_decay = 0
work_dir = './work_dirs/internlm_chat_7b_qlora_oasst1_e3_copy'