-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmatrix_operations.qmd
909 lines (706 loc) · 21.1 KB
/
matrix_operations.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
# Matrix Operations {#sec-matrix-operations}
Addition, subtraction, multiplication, division. These are all things you already know how to do with single numbers. What happens, though, if you want to multiply two different matrices together. Does that simple, 'scalar' operation still translate if you have a $2x3$ matrix and a $3x2$ matrix? If words like matrix and scalar make you break out in a sweat, then this chapter is for you!
Matrix operations, especially multiplication, are critical for understanding core aspects of how modeling actually produces all these cool results that help us discover so many interesting things. Knowing the underlying mechanics of matrix operations helps to demystify several issues that you might run into with your models. It can also help to get the gist of various articles and papers that you might come across. Before we get into any operations, though, let's make sure we are together on some concepts.
```{r}
#| echo: false
#| label: matrix-vis
base = crossing(
x = 1:3,
y = 1:3
) |>
mutate(
scaler = ifelse(x == 2 & y == 2, 1, 0),
row_vector = ifelse(y == 2, 1, 0),
col_vector = ifelse(x == 2, 1, 0),
matrix = 1
)
p_scalar = base |>
ggplot(aes(x = 1, y = 1)) +
geom_tile(
aes(fill = factor(scaler)),
width=0.8,
height=0.8,
linewidth = 3,
color = '#fffff8',
na.rm = FALSE,
show.legend = FALSE
) +
geom_tile(
aes(fill = factor(scaler)),
width=0.7,
height=0.7,
linewidth = 3,
color = '#fffff8',
na.rm = FALSE,
show.legend = FALSE
) +
scale_fill_manual(values = c('gray75', 'white')) +
labs(
# title ='Scalar',
) +
theme_void() +
theme(
plot.title = element_text(hjust = .5, size = 20)
)
ggsave('img/app-matrix-scalar.svg', p_scalar, width = 4, height = 3, bg = 'transparent')
p_row = base |>
ggplot(aes(x = x, y = y)) +
# geom_tile(
# aes(fill = factor(row_vector)),
# width=0.8,
# height=0.8,
# linewidth = 3,
# color = '#fffff8',
# na.rm = FALSE,
# show.legend = FALSE
# ) +
geom_tile(
aes(fill = factor(row_vector)),
width = .7,
height = 1,
linewidth = 3,
color = '#fffff8',
na.rm = FALSE,
show.legend = FALSE
) +
scale_fill_manual(values = c('white', 'gray75')) +
labs(
title = 'Row Vector',
) +
theme_void() +
theme(
plot.title = element_text(hjust = .5, size = 20)
)
ggsave('img/app-matrix-row.svg', p_row, width = 8, height = 6, bg = 'transparent')
p_col = base |>
ggplot(aes(x = x, y = y)) +
# geom_tile(
# aes(fill = factor(col_vector)),
# width=0.8,
# height=0.8,
# linewidth = 3,
# color = '#fffff8',
# na.rm = FALSE,
# show.legend = FALSE
# ) +
geom_tile(
aes(fill = factor(col_vector)),
width = 1,
height = .7,
linewidth = 3,
color = '#fffff8',
na.rm = FALSE,
show.legend = FALSE
) +
scale_fill_manual(values = c('white', 'gray75')) +
labs(
title = 'Column Vector',
) +
theme_void() +
theme(
plot.title = element_text(hjust = .5, size = 20)
)
ggsave('img/app-matrix-col.svg', p_col, width = 8, height = 8)
# p_row + p_col
ggsave('img/app-matrix-row-col-vector.svg', p_row + p_col, width = 8, height = 6, bg = 'transparent')
p_matrix = base |>
ggplot(aes(x = x, y = y)) +
# geom_tile(
# aes(fill = factor(matrix)),
# width = 1.05,
# height = 1.05,
# linewidth = 3,
# color = '#fffff8',
# na.rm = FALSE,
# show.legend = FALSE
# ) +
geom_tile(
aes(fill = factor(matrix)),
width = .95,
height = .95,
linewidth = 3,
color = '#fffff8',
na.rm = FALSE,
show.legend = FALSE
) +
scale_fill_manual(values = c( 'gray75')) +
labs(
# title = 'Matrix',
) +
theme_void() +
theme(
# plot.background = element_rect(fill = 'gray98'),
plot.title = element_text(hjust = .5, size = 20)
)
ggsave('img/app-matrix-matrix.svg', p_matrix, width = 8, height = 6, bg = 'transparent')
```
A **scalar** is a single numeric value. It might help if you think about a scalar as a single 'block'.
![Scalar](img/app-matrix-scalar.svg){width=20%}
:::{.panel-tabset}
##### Code
```{r}
#| eval: false
#| label: matrix-scalar
scalar_example = 1 # scalar value in r or python
```
:::
And just like we can line blocks up on the floor, we can put our scalars together to form a **vector**. A vector is a collection of scalars with a length of *n*. We can also think of a vector as a single row or column of scalars.
![Row and Column Vectors](img/app-matrix-row-col-vector.svg){width=50%}
There are many ways to create a vector in R and Python. Here are a couple.
:::{.panel-tabset}
##### R
```{r}
#| eval: false
#| label: matrix-vector-r
vector_example = 1:6
vector_example = c(1, 2, 3, 4, 5, 6)
vector_example = matrix(1:6, nrow = 1) # or ncol = 1
```
##### Python
```{python}
#| eval: false
#| label: matrix-vector-py
import numpy as np
vector_example = range(5)
vector_example = [1, 2, 3, 4, 5] # as list
row_vector = np.array([1, 2, 3]) # create a row vector
column_vector = np.array([[1], [2], [3]]) # create a column vector
```
:::
Now, we can take a few of our block vectors and stack them into a **matrix**, assuming the vectors are of the same size. A matrix is a 2 dimensional collection of vectors, and it is the fundamental structure for tabular data and beyond.
![Matrix](img/app-matrix-matrix.svg){width=50%}
And here is a matrix of specific values:
$$
\begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 6\\
7 & 8 & 9
\end{bmatrix}
$$
If you think about most tables you've ever seen, you'll see that the simple matrix looks remarkably familiar!
:::{.panel-tabset}
##### R
```{r}
#| eval: false
#| label: matrix-matrix-r
matrix_example = matrix(1:6, nrow = 2, ncol = 3)
dim(matrix_example)
```
##### Python
```{python}
#| eval: false
#| label: matrix-matrix-py
matrix_example = np.array([[1, 2, 3], [4, 5, 6]])
matrix_example.shape
```
:::
A matrix has 2 dimensions, rows and columns, which can be any size. When we talk about the dimensions of a matrix, we always make note of the rows first, followed by the columns. This matrix has 2 rows and 3 columns, therefore, we have a $2x3$, 'two by three' matrix[^majormatrix].
[^majormatrix]: Numpy arrays/matrices are in **row major** order, while R is **column major** order. You'll note how with [numpy]{.pack} we essentially provided two rows to the array function, which automatically created the 2 x 3 matrix. The R matrix is not the same, because by default it fills in the columns. If you add `by_row = TRUE`, you'd then get the same result as the [numpy]{.pack} example. Column major is generally more intuitive for tabular data, because that's how we think of data stored in tables, and why the [pandas]{.pack} package in python is also column major/oriented. However, both R and Python are very flexible, and more generally work in arrays. If you use both it can take a bit to settle with one if you've used the other (especially for 'apply' functions). The [reticulate]{.pack} package has [a vignette](https://cran.r-project.org/web/packages/reticulate/vignettes/arrays.html) that provides a nice overview, while the [rray]{.pack} package actually brings the [numpy]{.pack} approach to the R landscape.
## Addition
Matrix addition, along with subtraction, is the easiest concept when dealing with matrices. There is one rule though: the matrices need to have the same dimensions. From a practical code perspective, if one is a scalar, addition of the scalar will be applied to every element in the matrix.
Let's check out these two matrices:
$$
\stackrel{\mbox{Matrix A}}{
\begin{bmatrix}
1_{11} & 2_{12} & 3_{13}\\
4_{21} & 5_{22} & 6_{23}
\end{bmatrix}
}
\
\stackrel{\mbox{Matrix B}}{
\begin{bmatrix}
7_{11} & 8_{12} & 9_{13}\\
9_{21} & 8_{22} & 7_{23}
\end{bmatrix}
}
$$
You probably noticed that we gave each scalar within the matrix a label associated with its row and column position. We can use these to see how we will produce the new matrix:
Now, we can set this up as an addition problem to produce Matrix C:
$$
\stackrel{\mbox{Matrix A}}{
\begin{bmatrix}
1_{11} & 2_{12} & 3_{13}\\
4_{21} & 5_{22} & 6_{23}
\end{bmatrix}
}
+
\stackrel{\mbox{Matrix B}}{
\begin{bmatrix}
7_{11} & 8_{12} & 9_{13}\\
9_{21} & 8_{22} & 7_{23}
\end{bmatrix}
}
=
\stackrel{\mbox{Matrix C}}{
\begin{bmatrix}
A_{11} + B_{11}& A_{12} + B_{12} & A_{13} + B_{13}\\
A_{21} + B_{21}& A_{22} + B_{22} & A_{23} + B_{23}
\end{bmatrix}
}
$$
Now we can pull in the real numbers:
$$
\stackrel{\mbox{Matrix A}}{
\begin{bmatrix}
1_{11} & 2_{12} & 3_{13}\\
4_{21} & 5_{22} & 6_{23}
\end{bmatrix}
}
+
\stackrel{\mbox{Matrix B}}{
\begin{bmatrix}
7_{11} & 8_{12} & 9_{13}\\
9_{21} & 8_{22} & 7_{23}
\end{bmatrix}
}
=
\stackrel{\mbox{Matrix C}}{
\begin{bmatrix}
1 + 7 & 2 + 8 & 3 + 9\\
4 + 9 & 5 + 8 & 6 + 7
\end{bmatrix}
}
$$
Giving us Matrix C:
$$
\stackrel{\mbox{Matrix A}}{
\begin{bmatrix}
1_{11} & 2_{12} & 3_{13}\\
4_{21} & 5_{22} & 6_{23}
\end{bmatrix}
}
+
\stackrel{\mbox{Matrix B}}{
\begin{bmatrix}
7_{11} & 8_{12} & 9_{13}\\
9_{21} & 8_{22} & 7_{23}
\end{bmatrix}
}
=
\stackrel{\mbox{Matrix C}}{
\begin{bmatrix}
8 & 10 & 12 \\
13 & 13 & 13
\end{bmatrix}
}
$$
First, let's create those matrices in R and Python.
:::{.panel-tabset}
##### R
In R, we can create a matrix a few ways: with the matrix function or by row binding numeric vectors.
```{r}
#| label: matrix-add-subtract-r-setup
matrix_A = rbind(1:3, 4:6)
# The following is an equivalent
# to rbind:
# matrix_A = matrix(
# c(1:3, 4:6),
# nrow = 2,
# ncol = 3,
# byrow = TRUE
# )
matrix_B = rbind(7:9, 9:7)
```
##### Python
The task is just as easy in Python. We will import `numpy` and then use the `matrix` method to create the matrices:
```{python}
#| label: matrix-add-py-setup
import numpy as np
matrix_A = np.array([[1, 2, 3], [4, 5, 6]])
matrix_B = np.array([[7, 8, 9], [9, 8, 7]])
```
:::
Once we have those matrices created, we can use the standard `+` to add them together:
:::{.panel-tabset}
##### R
```{r}
#| label: matrix-add-r
matrix_A + matrix_B
```
```{r}
#| label: matrix-add-scalar-r
matrix_A + 3
```
##### Python
Just like R, we can use `+` with those matrices.
```{python}
#| label: matrix-add-py
matrix_A + matrix_B
```
```{python}
#| label: matrix-add-scalar-py
matrix_A + 3
```
:::
## Subtraction
Take everything that you just saw with addition and replace it with subtraction! But just like addition, every matrix needs to have the same dimensions.
<!--
Let's see those two matrices again and cast it as subtraction problem:
$$
\stackrel{\mbox{Matrix A}}{
\begin{bmatrix}
1_{11} & 2_{12} & 3_{13}\\
4_{21} & 5_{22} & 6_{23}
\end{bmatrix}
}
-
\stackrel{\mbox{Matrix B}}{
\begin{bmatrix}
7_{11} & 8_{12} & 9_{13}\\
9_{21} & 8_{22} & 7_{23}
\end{bmatrix}
}
=
\stackrel{\mbox{Matrix C}}{
\begin{bmatrix}
A_{11} - B_{11}& A_{12} - B_{12} & A_{13} - B_{13}\\
A_{21} - B_{21}& A_{22} - B_{22} & A_{23} - B_{23}
\end{bmatrix}
}
$$
And now we can substitute in the real numbers:
$$
\stackrel{\mbox{Matrix A}}{
\begin{bmatrix}
1_{11} & 2_{12} & 3_{13}\\
4_{21} & 5_{22} & 6_{23}
\end{bmatrix}
}
-
\stackrel{\mbox{Matrix B}}{
\begin{bmatrix}
7_{11} & 8_{12} & 9_{13}\\
9_{21} & 8_{22} & 7_{23}
\end{bmatrix}
}
=
\stackrel{\mbox{Matrix C}}{
\begin{bmatrix}
1 - 7 & 2 - 8 & 3 - 9\\
4 - 9 & 5 - 8 & 6 - 7
\end{bmatrix}
}
$$
-->
Here is the result:
$$
\stackrel{\mbox{Matrix A}}{
\begin{bmatrix}
1_{11} & 2_{12} & 3_{13}\\
4_{21} & 5_{22} & 6_{23}
\end{bmatrix}
}
-
\stackrel{\mbox{Matrix B}}{
\begin{bmatrix}
7_{11} & 8_{12} & 9_{13}\\
9_{21} & 8_{22} & 7_{23}
\end{bmatrix}
}
=
\stackrel{\mbox{Matrix C}}{
\begin{bmatrix}
-6 & -6 & -6 \\
-5 & -3 & -1
\end{bmatrix}
}
$$
Subtracting matrices in R and Python is the same as addition, just using `-` instead.
:::{.panel-tabset}
##### R
```{r}
#| label: matrix-subtract-r
matrix_A - matrix_B
```
```{r}
#| label: matrix-subtract-scalar-r
matrix_A - 3
```
##### Python
```{python}
#| label: matrix-subtract-py
matrix_A - matrix_B
```
```{python}
#| label: matrix-subtract-scalar-py
matrix_A - 3
```
:::
## Transpose
You might see a matrix denoted as $A^T$ or $A'$. The superscripted $T$ or $'$ for matrix **transpose**. If we transpose a matrix, all we are doing is flipping the rows and columns along the matrix 'main diagonal'. A visual example is much easier:
$$
\stackrel{\mbox{Matrix A}}{
\begin{bmatrix}
1_{11} & 2_{12} & 3_{13}\\
4_{21} & 5_{22} & 6_{23}
\end{bmatrix}
}
->
\stackrel{\mbox{Matrix A transposed} }{
\begin{bmatrix}
1 & 4 \\
2 & 5 \\
3 & 6
\end{bmatrix}
}
$$
:::{.panel-tabset}
##### R
In R, all we need is the `t` function:
```{r}
#| label: matrix-transpose-r
t(matrix_A)
```
##### Python
In Python, we can use numpy's `transpose` method:
```{python}
#| label: matrix-transpose-py
matrix_A.transpose()
matrix_A.T # shorthand
```
:::
## Multiplication
Now you probably have some confidence in doing matrix operations. Just as quickly as we built that confidence, it will be crushed when learning about matrix multiplication.
When dealing with matrix multiplication, we have a huge change to our previous rule. No longer do our dimensions have to be the same! Instead, the matrices need to be *conformable* -- the first matrix needs to have the same number of columns as the number of rows within the second matrix. In other words, the inner dimensions must match.
Look one more time at these matrices:
$$
\stackrel{\mbox{Matrix A}}{
\begin{bmatrix}
1_{11} & 2_{12} & 3_{13}\\
4_{21} & 5_{22} & 6_{23}
\end{bmatrix}
}
.
\stackrel{\mbox{Matrix B}}{
\begin{bmatrix}
7_{11} & 8_{12} & 9_{13}\\
9_{21} & 8_{22} & 7_{23}
\end{bmatrix}
}
$$
Matrix A has dimensions of $2x3$, as does Matrix B. Putting those dimensions side by side -- $2x3 * 2x3$ -- we see that our inner dimensions are 3 and 2 and do not match.
What if we *transpose* Matrix B?
$$
\stackrel{\mbox{Matrix B}^T}{
\begin{bmatrix}
7_{11} & 9_{12} \\
8_{21}& 8_{22}\\
9_{31} & 7_{32}
\end{bmatrix}
}
$$
Now we have something that works!
$$
\stackrel{\mbox{Matrix A}}{
\begin{bmatrix}
1_{11} & 2_{12} & 3_{13}\\
4_{21} & 5_{22} & 6_{23}
\end{bmatrix}
}
.
\stackrel{\mbox{Matrix B}^T}{
\begin{bmatrix}
7_{11} & 9_{12} \\
8_{21}& 8_{22}\\
9_{31} & 7_{32}
\end{bmatrix}
}
=
\stackrel{\mbox{Matrix C}}{
\begin{bmatrix}
. & . \\
. & . \\
\end{bmatrix}
}
$$
Now we have a $2x3 * 3x2$ matrix multiplication problem! The resulting matrix will have the same dimensions as our two matrices' outer dimensions: $2x2$.
Here is how we will get a $2x2$ matrix:
\small
$$
\stackrel{\mbox{Matrix A}}{
\begin{bmatrix}
1_{11} & 2_{12} & 3_{13}\\
4_{21} & 5_{22} & 6_{23}
\end{bmatrix}
}
.
\stackrel{\mbox{Matrix B}^T}{
\begin{bmatrix}
7_{11} & 9_{12} \\
8_{21}& 8_{22}\\
9_{31} & 7_{32}
\end{bmatrix}
}
=
$$
$$
\stackrel{\mbox{Matrix C}}{
\begin{bmatrix}
(A_{11}*B_{11})+(A_{12}*B_{21})+(A_{13}*B_{31}) & (A_{11}*B_{12})+(A_{12}*B_{22})+(A_{13}*B_{32})\\
(A_{21}*B_{11})+(A_{22}*B_{21})+(A_{23}*B_{31}) & (A_{21}*B_{12})+(A_{22}*B_{22})+(A_{23}*B_{32})
\end{bmatrix}
}
$$
\normalsize
That might look like a horrible mess and likely isn't easy to commit to memory. Instead, we'd like to show you a way that might make it easier to remember how to multiply matrices. It also gives a nice representation of why your matrices need to be conformable.
We can leave Matrix A exactly where it is, flip Matrix B$^T$, and stack it right on top of Matrix A:
$$
\begin{bmatrix}
9_{b} & 8_{b} & 7_{b} \\
7_{b} & 8_{b} & 9_{b} \\
\\
1_{a} & 2_{a} & 3_{a} \\
4_{a} & 5_{a} & 6_{a}
\end{bmatrix}
$$
Now, we can let those rearranged columns from Matrix B$^T$ 'fall down' through the rows of Matrix A:
$$
\begin{bmatrix}
9_{b} & 8_{b} & 7_{b} \\
\\
1_{a}*7_{b} & 2_{a}*8_{b} & 3_{a}*9_{b}\\
4_{a} & 5_{a} & 6_{a}
\end{bmatrix}
=
\stackrel{\mbox{Matrix C}}{
\begin{bmatrix}
50 & .\\
. & .
\end{bmatrix}
}
$$
Adding those products together gives us 50 for $C_{11}$.
Let's move that row down to the next row in the Matrix A, multiply, and sum the products.
$$
\begin{bmatrix}
9_{b} & 8_{b} & 7_{b} \\
\\
1_{a} & 2_{a} & 3_{a}\\
4_{a}*7_{b} & 5_{a}*8_{b} & 6_{a}*9_{b}
\end{bmatrix}
=
\stackrel{\mbox{Matrix C}}{
\begin{bmatrix}
50 & .\\
122 & .
\end{bmatrix}
}
$$
We have 122 for $C_{21}$. That first column from Matrix B$^T$ won't be used any more, but now we need to move the second column through Matrix A.
$$
\begin{bmatrix}
1_{a}*9_{b} & 2_{a}*8_{b} & 3_{a}*7_{b}\\
4_{a} & 5_{a} & 6_{a}
\end{bmatrix}
=
\stackrel{\mbox{Matrix C}}{
\begin{bmatrix}
50 & 46\\
122 & .
\end{bmatrix}
}
$$
That gives us 46 for $C_{12}$.
And finally:
$$
\begin{bmatrix}
1_{a} & 2_{a} & 3_{a}\\
4_{a}*9_{b} & 5_{a}*8_{b} & 6_{a}*7_{b}
\end{bmatrix}
=
\stackrel{\mbox{Matrix C}}{
\begin{bmatrix}
50 & 46\\
122 & 118
\end{bmatrix}
}
$$
We have 118 for $C_{22}$.
Now that you know how these work, you can see how easy it is to handle these tasks in R and Python.
:::{.panel-tabset}
##### R
In R, we need to use a fancy operator: `%*%`. This is just R's matrix multiplication operator. We will also use the transpose function: `t`.
```{r}
#| label: matrix-multiply-r
matrix_A %*% t(matrix_B)
```
##### Python
In Python, we can just use the regular multiplication operator and the transpose method:
```{python}
#| label: matrix-multiply-py
matrix_A @ matrix_B.T
```
:::
You can see that whether we do this by hand, R, or Python, we come up with the same answer! While these small matrices can definitely be done by hand, we will always trust the computer to handle larger matrices. The main thing is to understand the mechanics behind the operation.
:::{.callout-note title='Elementwise Multiplication' collapse='true'}
Matrix multiplication is not the same as **elementwise** multiplication. Elementwise multiplication is when you multiply each element in one matrix by the corresponding element in another matrix. This is done with the `*` operator in R and Python. The matrices must have identical dimensions for this. As with addition and subtraction, if one matrix is a scalar, the operation is automatically applied to every element in the matrix.
:::
## Division
Though addition, subtraction, and multiplication are all pretty straightforward, matrix division is not. In fact, there really isn't such a thing as matrix division, we just use matrix multiplication in a particular way. This is similar to how we can divide two numbers, for example, $a/b$, but we can also multiply by the reciprocal, $a*(1/b)$. In matrix terms this would look something like:
$$
AB^{-1}
$$
While that may also seem straightforward on the surface, **matrix inversion** is not. The basic idea is that we are looking for a matrix that, when multiplied by the original matrix like $B$, gives us the identity matrix. The **identity matrix** is a matrix that has 1s along the diagonal and 0s everywhere else.
$$
\begin{bmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{bmatrix}
$$
Another caveat is that not all matrices have inverses. If the **determinant** of a matrix is 0, then it does not have an inverse. Technically, only square matrices can have inverses, but not all square matrices have inverses. We can, however, get a **pseudo-inverse** for non-square matrices.
:::{.panel-tabset}
##### R
```{r}
#| label: matrix-inverse-r
matrix_B_inv = MASS::ginv(matrix_B)
round(matrix_B %*% matrix_B_inv)
```
##### Python
```{python}
#| label: matrix-inverse-py
matrix_B_inv = np.linalg.pinv(matrix_B)
(matrix_B @ matrix_B_inv).round()
```
:::
More to the point, when would we do this? In the world of modeling, we might use matrix inversion to solve a system of equations. For example, this can be implemented in linear regression, where we are trying to find the coefficients that minimize the error in our model. That problem has an analytical solution that involves matrix inversion.
$$
\beta = (X^TX)^{-1}X^Ty
$$
Let's see this for ourselves. We will create a simple linear regression model and solve for the coefficients using matrix inversion.
:::{.panel-tabset}
##### R
```{r}
#| label: matrix-inverse-r-lm
set.seed(123)
x = rnorm(100)
y = 2*x + rnorm(100)
X = cbind(1, x)
beta = MASS::ginv(t(X) %*% X) %*% t(X) %*% y
tibble(
ours = beta[,1],
standard = coef(lm(y ~ x))
)
```
##### Python
```{python}
#| label: matrix
import statsmodels.api as sm
import pandas as pd
np.random.seed(123)
x = np.random.normal(size = 100)
y = 2*x + np.random.normal(size = 100)
X = np.c_[np.ones(100), x]
beta = np.linalg.pinv(X.T @ X) @ X.T @ y
beta
model_sm = sm.OLS(y, X)
results_sm = model_sm.fit()
coefficients_sm = results_sm.params
pd.DataFrame({
'ours': beta,
'standard': coefficients_sm
})
```
:::
## Summary
While matrix operations are not something we explicitly do everyday data science, it is always lurking behind the scenes. Having a grasp of the underlying model mechanics helps demystify the modeling process, and can greatly expand a data scientist's abilities when you have to dive into matrix operations for model building. Whether linear regression or deep learning, matrix operations are at the core of almost every model you come across.