-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathmetrics.py
227 lines (191 loc) · 10.1 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from metrics_utils import *
import numpy as np
from scipy.io import wavfile
from scipy import interpolate
from scipy.linalg import solve_toeplitz,toeplitz
import pesq as pypesq
from pystoi import stoi
import random
# Expected input, 2 numpy arrays, one for the reference clean audio, the other for the degraded audio, and sampling rate (should be same)
# The way we'd use these metrics would be to compute the values on clean compared to noisy and then clean compared to our denoising results
class AudioMetrics():
def __init__(self, target_speech, input_speech, fs):
if len(target_speech) != len(input_speech):
raise AudioMetricsException("Signal lengths don't match!")
self.min_cutoff = 0.01
self.clip_values = (-self.min_cutoff, self.min_cutoff)
# The SSNR and composite metrics fail when comparing silence
# The minimum value of the signal is clipped to 0.001 or -0.001 to overcome that. For reference, in a non-silence case, the minimum value was around 40 (???? Find correct value)
# For PESQ and STOI, results are identical regardless of wether or not 0 is present
# The Metrics are as follows:
# SSNR : Segmented Signal to noise ratio - Capped from [-10,35] (higher is better)
# PESQ : Perceptable Estimation of Speech Quality - Capped from [-0.5, 4.5]
# STOI : Short Term Objective Intelligibilty of Speech - From 0 to 1
# CSIG : Quality of Speech Signal. Ranges from 1 to 5 (Higher is better)
# CBAK : Quality of Background intrusiveness. Ranges from 1 to 5 (Higher is better - less intrusive)
# COVL : Overall Quality measure. Ranges from 1 to 5 (Higher is better)
# CSIG,CBAK and COVL are computed using PESQ and some other metrics like LLR and WSS
clean_speech = np.zeros(shape=target_speech.shape)
processed_speech = np.zeros(shape=input_speech.shape)
for index, data in np.ndenumerate(target_speech):
# If value less than min_cutoff difference from 0, then clip
'''
if data<=self.min_cutoff and data>=-self.min_cutoff:
if data < 0:
clean_speech[index] = self.clip_values[0]
else:
clean_speech[index] = self.clip_values[1]
'''
if data==0:
clean_speech[index] = 0.01
else:
clean_speech[index] = data
for index, data in np.ndenumerate(input_speech):
'''
# If value less than min_cutoff difference from 0, then clip
if data<=self.min_cutoff and data>=-self.min_cutoff:
if data < 0:
processed_speech[index] = self.clip_values[0]
else:
processed_speech[index] = self.clip_values[1]
'''
if data==0:
processed_speech[index] = 0.01
else:
processed_speech[index] = data
#print('clean speech: ', clean_speech)
#print('processed speech : ', processed_speech)
self.SNR = snr(target_speech, input_speech)
self.SSNR = SNRseg(target_speech, input_speech,fs)
self.PESQ = pesq_score(clean_speech, processed_speech, fs, force_resample=True)
self.STOI = stoi_score(clean_speech, processed_speech, fs)
self.CSIG, self.CBAK, self.COVL = composite(clean_speech, processed_speech, fs)
def display(self):
fstring = "{} : {:.3f}"
metric_names = ["CSIG","CBAK","COVL","PESQ","SSNR","STOI","SNR"]
for name in metric_names:
metric_value = eval("self."+name)
print(fstring.format(name,metric_value))
class AudioMetrics2():
def __init__(self, target_speech, input_speech, fs):
if len(target_speech) != len(input_speech):
raise AudioMetricsException("Signal lengths don't match!")
self.min_cutoff = 0.01
self.clip_values = (-self.min_cutoff, self.min_cutoff)
# The SSNR and composite metrics fail when comparing silence
# The minimum value of the signal is clipped to 0.001 or -0.001 to overcome that. For reference, in a non-silence case, the minimum value was around 40 (???? Find correct value)
# For PESQ and STOI, results are identical regardless of wether or not 0 is present
# The Metrics are as follows:
# SSNR : Segmented Signal to noise ratio - Capped from [-10,35] (higher is better)
# PESQ : Perceptable Estimation of Speech Quality - Capped from [-0.5, 4.5]
# STOI : Short Term Objective Intelligibilty of Speech - From 0 to 1
# CSIG : Quality of Speech Signal. Ranges from 1 to 5 (Higher is better)
# CBAK : Quality of Background intrusiveness. Ranges from 1 to 5 (Higher is better - less intrusive)
# COVL : Overall Quality measure. Ranges from 1 to 5 (Higher is better)
# CSIG,CBAK and COVL are computed using PESQ and some other metrics like LLR and WSS
clean_speech = np.zeros(shape=target_speech.shape)
processed_speech = np.zeros(shape=input_speech.shape)
for index, data in np.ndenumerate(target_speech):
# If value less than min_cutoff difference from 0, then clip
'''
if data<=self.min_cutoff and data>=-self.min_cutoff:
if data < 0:
clean_speech[index] = self.clip_values[0]
else:
clean_speech[index] = self.clip_values[1]
'''
if data==0:
clean_speech[index] = 0.01
else:
clean_speech[index] = data
for index, data in np.ndenumerate(input_speech):
'''
# If value less than min_cutoff difference from 0, then clip
if data<=self.min_cutoff and data>=-self.min_cutoff:
if data < 0:
processed_speech[index] = self.clip_values[0]
else:
processed_speech[index] = self.clip_values[1]
'''
if data==0:
processed_speech[index] = 0.01
else:
processed_speech[index] = data
#print('clean speech: ', clean_speech)
#print('processed speech : ', processed_speech)
self.SNR = snr(target_speech, input_speech)
self.SSNR = SNRseg(target_speech, input_speech,fs)
self.STOI = stoi_score(clean_speech, processed_speech, fs)
# Formula Reference: http://www.irisa.fr/armor/lesmembres/Mohamed/Thesis/node94.html
def snr(reference, test):
numerator = 0.0
denominator = 0.0
for i in range(len(reference)):
numerator += reference[i]**2
denominator += (reference[i] - test[i])**2
return 10*np.log10(numerator/denominator)
# Reference : https://github.com/schmiph2/pysepm
def SNRseg(clean_speech, processed_speech,fs, frameLen=0.03, overlap=0.75):
eps=np.finfo(np.float64).eps
winlength = round(frameLen*fs) #window length in samples
skiprate = int(np.floor((1-overlap)*frameLen*fs)) #window skip in samples
MIN_SNR = -10 # minimum SNR in dB
MAX_SNR = 35 # maximum SNR in dB
hannWin=0.5*(1-np.cos(2*np.pi*np.arange(1,winlength+1)/(winlength+1)))
clean_speech_framed=extract_overlapped_windows(clean_speech,winlength,winlength-skiprate,hannWin)
processed_speech_framed=extract_overlapped_windows(processed_speech,winlength,winlength-skiprate,hannWin)
signal_energy = np.power(clean_speech_framed,2).sum(-1)
noise_energy = np.power(clean_speech_framed-processed_speech_framed,2).sum(-1)
segmental_snr = 10*np.log10(signal_energy/(noise_energy+eps)+eps)
segmental_snr[segmental_snr<MIN_SNR]=MIN_SNR
segmental_snr[segmental_snr>MAX_SNR]=MAX_SNR
segmental_snr=segmental_snr[:-1] # remove last frame -> not valid
return np.mean(segmental_snr)
def composite(clean_speech, processed_speech, fs):
wss_dist=wss(clean_speech, processed_speech, fs)
llr_mean=llr(clean_speech, processed_speech, fs,used_for_composite=True)
segSNR=SNRseg(clean_speech, processed_speech, fs)
pesq_mos,mos_lqo = pesq(clean_speech, processed_speech,fs)
if fs >= 16e3:
used_pesq_val = mos_lqo
else:
used_pesq_val = pesq_mos
Csig = 3.093 - 1.029*llr_mean + 0.603*used_pesq_val-0.009*wss_dist
Csig = np.max((1,Csig))
Csig = np.min((5, Csig)) # limit values to [1, 5]
Cbak = 1.634 + 0.478 *used_pesq_val - 0.007*wss_dist + 0.063*segSNR
Cbak = np.max((1, Cbak))
Cbak = np.min((5,Cbak)) # limit values to [1, 5]
Covl = 1.594 + 0.805*used_pesq_val - 0.512*llr_mean - 0.007*wss_dist
Covl = np.max((1, Covl))
Covl = np.min((5, Covl)) # limit values to [1, 5]
return Csig,Cbak,Covl
def pesq_score(clean_speech, processed_speech, fs, force_resample=False):
if fs!=8000 or fs!=16000:
if force_resample:
clean_speech = resample(clean_speech, fs, 16000)
processed_speech = resample(processed_speech, fs, 16000)
fs = 16000
else:
raise(AudioMetricsException("Invalid sampling rate for PESQ! Need 8000 or 16000Hz but got "+str(fs)+"Hz"))
if fs==16000:
score = pypesq.pesq(16000, clean_speech, processed_speech, 'wb')
score = min(score,4.5)
score = max(-0.5,score)
return(score)
else:
score = pypesq.pesq(16000, clean_speech, processed_speech, 'nb')
score = min(score,4.5)
score = max(-0.5,score)
return(score)
# Original paper http://cas.et.tudelft.nl/pubs/Taal2010.pdf
# Says to resample to 10kHz if not already at that frequency. I've kept options to adjust
def stoi_score(clean_speech, processed_speech, fs, force_resample=True, force_10k=True):
if fs!=10000 and force_10k==True:
if force_resample:
clean_speech = resample(clean_speech, fs, 10000)
processed_speech = resample(processed_speech, fs, 10000)
fs = 10000
else:
raise(AudioMetricsException("Forced 10kHz sample rate for STOI. Got "+str(fs)+"Hz"))
return stoi(clean_speech, processed_speech, 10000, extended=False)