-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
301 lines (260 loc) · 13.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import os
import sys
import time
import glob
import numpy as np
import torch
import utils
import logging
import argparse
import torch.nn as nn
import torch.utils
import torchvision.datasets as dset
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from model import DARTS_ADP_N2, DARTS_ADP_N3, DARTS_ADP_N4
# for ADP dataset only
from ADP_utils.classesADP import classesADP
parser = argparse.ArgumentParser("adp")
parser.add_argument('--data', type=str, default='./data', help='location of the data corpus')
parser.add_argument('--dataset', type=str, default='ADP', help='choose dataset: ADP, BCSS, BACH, OS')
parser.add_argument('--batch_size', type=int, default=96, help='batch size')
parser.add_argument('--learning_rate', type=float, default=0.025, help='init learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay')
parser.add_argument('--report_freq', type=float, default=50, help='report frequency')
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--epochs', type=int, default=600, help='num of training epochs')
parser.add_argument('--auxiliary', action='store_true', default=False, help='use auxiliary tower')
parser.add_argument('--auxiliary_weight', type=float, default=0.4, help='weight for auxiliary loss')
parser.add_argument('--cutout', action='store_true', default=False, help='use cutout')
parser.add_argument('--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument('--drop_path_prob', type=float, default=0.2, help='drop path probability')
parser.add_argument('--save', type=str, default='EXP', help='experiment name')
parser.add_argument('--seed', type=int, default=0, help='random seed')
parser.add_argument('--arch', type=str, default='DARTS_ADP_N4', help='choose network architecture: DARTS_ADP_N2, DARTS_ADP_N3, DARTS_ADP_N4')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping')
parser.add_argument('--image_size', type=int, default=272, help='ADP image size')
# ADP only
parser.add_argument('--adp_level', type=str, default='L3', help='ADP label level')
args = parser.parse_args()
args.save = 'Train-{}-data-{}-arch-{}-{}'.format(args.save, args.dataset, args.arch, time.strftime("%Y%m%d-%H%M%S"))
utils.create_exp_dir(args.save, scripts_to_save=glob.glob('*.py'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if args.dataset == 'ADP':
n_classes = classesADP[args.adp_level]['numClasses']
elif args.dataset == 'BCSS':
n_classes = 10
elif args.dataset == 'BACH' or args.dataset == 'OS':
n_classes = 4
else:
logging.info('Unknown dataset!')
sys.exit(1)
def main():
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
np.random.seed(args.seed)
torch.cuda.set_device(args.gpu)
cudnn.benchmark = True
torch.manual_seed(args.seed)
cudnn.enabled = True
torch.cuda.manual_seed(args.seed)
logging.info('gpu device = %d' % args.gpu)
logging.info("args = %s", args)
# dataset
if args.dataset == 'ADP':
train_transform, valid_transform = utils._data_transforms_adp(args)
train_data = utils.ADP_dataset(level=args.adp_level, transform=train_transform, root=args.data, split='train')
valid_data = utils.ADP_dataset(level=args.adp_level, transform=valid_transform, root=args.data, split='valid')
test_data = utils.ADP_dataset(level=args.adp_level, transform=valid_transform, root=args.data, split='test')
elif args.dataset == 'BCSS':
train_transform, valid_transform = utils._data_transforms_bcss(args)
train_data = utils.BCSSDataset(root=args.data, split='train', transform=train_transform)
valid_data = utils.BCSSDataset(root=args.data, split='valid', transform=valid_transform)
test_data = utils.BCSSDataset(root=args.data, split='test', transform=valid_transform)
elif args.dataset == 'BACH':
train_transform, valid_transform = utils._data_transforms_bach(args)
train_data = utils.BACH_transformed(root=args.data, split='train', transform=train_transform)
valid_data = utils.BACH_transformed(root=args.data, split='valid', transform=valid_transform)
test_data = utils.BACH_transformed(root=args.data, split='test', transform=valid_transform)
elif args.dataset == 'OS':
train_transform, valid_transform = utils._data_transforms_os(args)
train_data = utils.OS_transformed(root=args.data, split='train', transform=train_transform)
valid_data = utils.OS_transformed(root=args.data, split='valid', transform=valid_transform)
test_data = utils.OS_transformed(root=args.data, split='test', transform=valid_transform)
train_queue = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=2)
valid_queue = torch.utils.data.DataLoader(
valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2)
test_queue = torch.utils.data.DataLoader(
test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2)
dataset_size = len(train_queue.dataset)
print('train dataset size:', len(train_queue.dataset))
print('valid dataset size:', len(valid_queue.dataset))
print('test dataset size:', len(test_queue.dataset))
# criterion
# ADP and BCSS are multi-label datasets
# Use MultiLabelSoftMarginLoss
if args.dataset == 'ADP' or args.dataset == 'BCSS':
train_class_counts = np.sum(train_queue.dataset.class_labels, axis=0)
weightsBCE = dataset_size / train_class_counts
weightsBCE = torch.as_tensor(weightsBCE, dtype=torch.float32).to(int(args.gpu))
criterion = torch.nn.MultiLabelSoftMarginLoss(weight=weightsBCE).cuda()
# BACH and OS are single-label datasets
# Use CrossEntropyLoss
elif args.dataset == 'BACH' or args.dataset == 'OS':
criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()
# model
if args.arch == 'DARTS_ADP_N2':
model = DARTS_ADP_N2(n_classes, args.auxiliary)
elif args.arch == 'DARTS_ADP_N3':
model = DARTS_ADP_N3(n_classes, args.auxiliary)
elif args.arch == 'DARTS_ADP_N4':
model = DARTS_ADP_N4(n_classes, args.auxiliary)
else:
logging.info('Unknown architecture!')
sys.exit(1)
model = model.cuda()
logging.info("param size = %fM", utils.count_parameters_in_MB(model))
# optimizer and scheduler
optimizer = torch.optim.SGD(
model.parameters(),
args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs))
# train
best_acc = 0
for epoch in range(args.epochs):
scheduler.step()
logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
model.drop_path_prob = args.drop_path_prob * epoch / args.epochs
train_acc_1, train_acc_5, train_obj = train(train_queue, model, criterion, optimizer)
logging.info('train_acc_1 %f, train_acc_5 %f', train_acc_1, train_acc_5)
valid_acc_1, valid_acc_5, valid_obj = infer(valid_queue, model, criterion)
logging.info('valid_acc_1 %f, valid_acc_5 %f', valid_acc_1, valid_acc_5)
if valid_acc_1 > best_acc:
best_acc = valid_acc_1
utils.save(model, os.path.join(args.save, 'best_weights.pt'))
utils.save(model, os.path.join(args.save, 'last_weights.pt'))
# test
if args.arch == 'DARTS_ADP_N2':
model_test = DARTS_ADP_N2(n_classes, args.auxiliary)
elif args.arch == 'DARTS_ADP_N3':
model_test = DARTS_ADP_N3(n_classes, args.auxiliary)
elif args.arch == 'DARTS_ADP_N4':
model_test = DARTS_ADP_N4(n_classes, args.auxiliary)
model_test = model_test.cuda()
# use last weights
logging.info("Test using last weights ...")
utils.load(model_test, os.path.join(args.save, 'last_weights.pt'))
model_test.drop_path_prob = args.drop_path_prob
test_acc1, test_acc5, test_obj = infer(test_queue, model_test, criterion)
logging.info('test_acc_1 %f, test_acc_5 %f', test_acc1, test_acc5)
# use best weights on valid set
logging.info("Test using best weights ...")
model_test = model_test.cuda()
utils.load(model_test, os.path.join(args.save, 'best_weights.pt'))
model_test.drop_path_prob = args.drop_path_prob
test_acc1, test_acc5, test_obj = infer(test_queue, model_test, criterion)
logging.info('test_acc_1 %f, test_acc_5 %f', test_acc1, test_acc5)
def train(train_queue, model, criterion, optimizer):
objs = utils.AverageMeter()
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
model.train()
trained_data_size = 0
for step, (input, target) in enumerate(train_queue):
input = input.cuda()
target = target.cuda(non_blocking=True)
optimizer.zero_grad()
logits, logits_aux = model(input)
loss = criterion(logits, target)
if args.auxiliary:
loss_aux = criterion(logits_aux, target)
loss += args.auxiliary_weight * loss_aux
loss.backward()
nn.utils.clip_grad_norm(model.parameters(), args.grad_clip)
optimizer.step()
n = input.size(0)
trained_data_size += n
if args.dataset == 'ADP' or args.dataset == 'BCSS':
m = nn.Sigmoid()
preds = (m(logits) > 0.5).int()
prec1, prec5 = utils.accuracyADP(preds, target)
objs.update(loss.item(), n)
top1.update(prec1.double(), n)
top5.update(prec5.double(), n)
elif args.dataset == 'BACH' or args.dataset == 'OS':
prec1, prec5 = utils.accuracy(logits, target, topk=(1, min(5, n_classes)))
objs.update(loss.item(), n)
top1.update(prec1.item(), n)
top5.update(prec5.item(), n)
# report training loss
if step % args.report_freq == 0:
if args.dataset == 'ADP' or args.dataset == 'BCSS':
top1_avg = (top1.sum_accuracy.cpu().item() / (trained_data_size * n_classes))
top5_avg = (top5.sum_accuracy.cpu().item() / trained_data_size)
elif args.dataset == 'BACH' or args.dataset == 'OS':
top1_avg = top1.avg
top5_avg = top5.avg
logging.info('train %03d %e %f %f', step, objs.avg, top1_avg, top5_avg)
if args.dataset == 'ADP' or args.dataset == 'BCSS':
top1_avg = (top1.sum_accuracy.cpu().item() / (len(train_queue.dataset) * n_classes))
top5_avg = (top5.sum_accuracy.cpu().item() / len(train_queue.dataset))
elif args.dataset == 'BACH' or args.dataset == 'OS':
top1_avg = top1.avg
top5_avg = top5.avg
return top1_avg, top5_avg, objs.avg
def infer(valid_queue, model, criterion):
objs = utils.AverageMeter()
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
model.eval()
infered_data_size = 0
with torch.no_grad():
for step, (input, target) in enumerate(valid_queue):
input = input.cuda()
target = target.cuda(non_blocking=True)
logits, _ = model(input)
loss = criterion(logits, target)
n = input.size(0)
infered_data_size += n
if args.dataset == 'ADP' or args.dataset == 'BCSS':
m = nn.Sigmoid()
preds = (m(logits) > 0.5).int()
prec1, prec5 = utils.accuracyADP(preds, target)
objs.update(loss.item(), n)
top1.update(prec1.double(), n)
top5.update(prec5.double(), n)
elif args.dataset == 'BACH' or args.dataset == 'OS':
prec1, prec5 = utils.accuracy(logits, target, topk=(1, min(5, n_classes)))
objs.update(loss.item(), n)
top1.update(prec1.item(), n)
top5.update(prec5.item(), n)
# report validation loss
if step % args.report_freq == 0:
if args.dataset == 'ADP' or args.dataset == 'BCSS':
top1_avg = (top1.sum_accuracy.cpu().item() / (infered_data_size * n_classes))
top5_avg = (top5.sum_accuracy.cpu().item() / infered_data_size)
elif args.dataset == 'BACH' or args.dataset == 'OS':
top1_avg = top1.avg
top5_avg = top5.avg
logging.info('valid %03d %e %f %f', step, objs.avg, top1_avg, top5_avg)
if args.dataset == 'ADP' or args.dataset == 'BCSS':
top1_avg = (top1.sum_accuracy.cpu().item() / (len(valid_queue.dataset) * n_classes))
top5_avg = (top5.sum_accuracy.cpu().item() / len(valid_queue.dataset))
elif args.dataset == 'BACH' or args.dataset == 'OS':
top1_avg = top1.avg
top5_avg = top5.avg
return top1_avg, top5_avg, objs.avg
if __name__ == '__main__':
main()