-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathfocal.py
902 lines (742 loc) · 28.2 KB
/
focal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
import copy
from functools import partial
from math import isnan, sqrt
import dask.array as da
import numba as nb
import numpy as np
import pandas as pd
import xarray as xr
from numba import cuda, prange
from xarray import DataArray
try:
import cupy
except ImportError:
class cupy(object):
ndarray = False
from xrspatial.convolution import convolve_2d, custom_kernel
from xrspatial.utils import ArrayTypeFunctionMapping, cuda_args, ngjit, not_implemented_func
# TODO: Make convolution more generic with numba first-class functions.
@ngjit
def _equal_numpy(x, y):
if x == y or (np.isnan(x) and np.isnan(y)):
return True
return False
@ngjit
def _mean_numpy(data, excludes):
out = np.zeros_like(data)
rows, cols = data.shape
for y in range(rows):
for x in range(cols):
exclude = False
for ex in excludes:
if _equal_numpy(data[y, x], ex):
exclude = True
break
if not exclude:
left = max(x-1, 0)
right = min(x+2, cols)
bottom = max(y-1, 0)
top = min(y+2, rows)
kernel_data = data[bottom:top, left:right]
out[y, x] = np.nanmean(kernel_data)
else:
out[y, x] = data[y, x]
return out
def _mean_dask_numpy(data, excludes):
_func = partial(_mean_numpy, excludes=excludes)
out = data.map_overlap(_func,
depth=(1, 1),
boundary=np.nan,
meta=np.array(()))
return out
@cuda.jit
def _mean_gpu(data, excludes, out):
i, j = cuda.grid(2)
for ex in excludes:
if (data[i, j] == ex) or (isnan(data[i, j]) and isnan(ex)):
out[i, j] = data[i, j]
return
rows, cols = out.shape
if 0 <= i < rows and 0 <= j < cols:
left = max(j - 1, 0)
right = min(j + 2, cols)
bottom = max(i - 1, 0)
top = min(i + 2, rows)
sum = 0
num = 0
for y in range(bottom, top):
for x in range(left, right):
if not isnan(data[y, x]):
sum += data[y, x]
num += 1
if num > 0:
out[i, j] = sum / num
def _mean_cupy(data, excludes):
griddim, blockdim = cuda_args(data.shape)
out = cupy.empty(data.shape, dtype='f4')
out[:] = cupy.nan
_mean_gpu[griddim, blockdim](data, cupy.asarray(excludes), out)
return out
def _mean(data, excludes):
agg = xr.DataArray(data)
mapper = ArrayTypeFunctionMapping(
numpy_func=_mean_numpy,
cupy_func=_mean_cupy,
dask_func=_mean_dask_numpy,
dask_cupy_func=lambda *args: not_implemented_func(
*args, messages='mean() does not support dask with cupy backed DataArray.'), # noqa
)
out = mapper(agg)(agg.data, excludes)
return out
def mean(agg, passes=1, excludes=[np.nan], name='mean'):
"""
Returns Mean filtered array using a 3x3 window.
Default behaviour to 'mean' is to exclude NaNs from calculations.
Parameters
----------
agg : xarray.DataArray
2D array of input values to be filtered.
passes : int, default=1
Number of times to run mean.
name : str, default='mean'
Output xr.DataArray.name property.
Returns
-------
mean_agg : xarray.DataArray of same type as `agg`
2D aggregate array of filtered values.
Examples
--------
Focal mean works with NumPy backed xarray DataArray
.. sourcecode:: python
>>> import numpy as np
>>> import xarray as xr
>>> from xrspatial.focal import mean
>>> data = np.array([
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 9., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])
>>> raster = xr.DataArray(data)
>>> mean_agg = mean(raster)
>>> print(mean_agg)
<xarray.DataArray 'mean' (dim_0: 5, dim_1: 5)>
array([[0., 0., 0., 0., 0.],
[0., 1., 1., 1., 0.],
[0., 1., 1., 1., 0.],
[0., 1., 1., 1., 0.],
[0., 0., 0., 0., 0.]])
Dimensions without coordinates: dim_0, dim_1
Focal mean works with Dask with NumPy backed xarray DataArray.
Increase number of runs by setting a specific value for parameter `passes`
.. sourcecode:: python
>>> import dask.array as da
>>> data_da = da.from_array(data, chunks=(3, 3))
>>> raster_da = xr.DataArray(data_da, dims=['y', 'x'], name='raster_da') # noqa
>>> print(raster_da)
<xarray.DataArray 'raster_da' (y: 5, x: 5)>
dask.array<array, shape=(5, 5), dtype=int64, chunksize=(3, 3), chunktype=numpy.ndarray> # noqa
Dimensions without coordinates: y, x
>>> mean_da = mean(raster_da, passes=2)
>>> print(mean_da)
<xarray.DataArray 'mean' (y: 5, x: 5)>
dask.array<_trim, shape=(5, 5), dtype=float64, chunksize=(3, 3), chunktype=numpy.ndarray> # noqa
Dimensions without coordinates: y, x
>>> print(mean_da.compute())
<xarray.DataArray 'mean' (y: 5, x: 5)>
array([[0.25 , 0.33333333, 0.5 , 0.33333333, 0.25 ],
[0.33333333, 0.44444444, 0.66666667, 0.44444444, 0.33333333],
[0.5 , 0.66666667, 1. , 0.66666667, 0.5 ],
[0.33333333, 0.44444444, 0.66666667, 0.44444444, 0.33333333],
[0.25 , 0.33333333, 0.5 , 0.33333333, 0.25 ]])
Dimensions without coordinates: y, x
Focal mean works with CuPy backed xarray DataArray.
In this example, we set `passes` to the number of elements of the array,
we'll get a mean array where every element has the same value.
.. sourcecode:: python
>>> import cupy
>>> raster_cupy = xr.DataArray(cupy.asarray(data), name='raster_cupy')
>>> mean_cupy = mean(raster_cupy, passes=25)
>>> print(type(mean_cupy.data))
<class 'cupy.core.core.ndarray'>
>>> print(mean_cupy)
<xarray.DataArray 'mean' (dim_0: 5, dim_1: 5)>
array([[0.47928995, 0.47928995, 0.47928995, 0.47928995, 0.47928995],
[0.47928995, 0.47928995, 0.47928995, 0.47928995, 0.47928995],
[0.47928995, 0.47928995, 0.47928995, 0.47928995, 0.47928995],
[0.47928995, 0.47928995, 0.47928995, 0.47928995, 0.47928995],
[0.47928995, 0.47928995, 0.47928995, 0.47928995, 0.47928995]])
Dimensions without coordinates: dim_0, dim_1
"""
out = agg.data.astype(float)
for i in range(passes):
out = _mean(out, tuple(excludes))
return DataArray(out,
name=name,
dims=agg.dims,
coords=agg.coords,
attrs=agg.attrs)
@ngjit
def _calc_mean(array):
return np.nanmean(array)
@ngjit
def _calc_sum(array):
return np.nansum(array)
@ngjit
def _calc_min(array):
return np.nanmin(array)
@ngjit
def _calc_max(array):
return np.nanmax(array)
@ngjit
def _calc_std(array):
return np.nanstd(array)
@ngjit
def _calc_range(array):
value_min = _calc_min(array)
value_max = _calc_max(array)
return value_max - value_min
@ngjit
def _calc_var(array):
return np.nanvar(array)
@ngjit
def _apply_numpy(data, kernel, func):
data = data.astype(np.float32)
out = np.zeros_like(data)
rows, cols = data.shape
krows, kcols = kernel.shape
hrows, hcols = int(krows / 2), int(kcols / 2)
kernel_values = np.zeros_like(kernel, dtype=data.dtype)
for y in prange(rows):
for x in prange(cols):
# kernel values are all nans at the beginning of each step
kernel_values.fill(np.nan)
for ky in range(y - hrows, y + hrows + 1):
for kx in range(x - hcols, x + hcols + 1):
if ky >= 0 and ky < rows and kx >= 0 and kx < cols:
kyidx, kxidx = ky - (y - hrows), kx - (x - hcols)
if kernel[kyidx, kxidx] == 1:
kernel_values[kyidx, kxidx] = data[ky, kx]
out[y, x] = func(kernel_values)
return out
def _apply_dask_numpy(data, kernel, func):
data = data.astype(np.float32)
_func = partial(_apply_numpy, kernel=kernel, func=func)
pad_h = kernel.shape[0] // 2
pad_w = kernel.shape[1] // 2
out = data.map_overlap(_func,
depth=(pad_h, pad_w),
boundary=np.nan,
meta=np.array(()))
return out
def apply(raster, kernel, func=_calc_mean, name='focal_apply'):
"""
Returns custom function applied array using a user-created window.
Parameters
----------
raster : xarray.DataArray
2D array of input values to be filtered. Can be a NumPy backed,
or Dask with NumPy backed DataArray.
kernel : numpy.ndarray
2D array where values of 1 indicate the kernel.
func : callable, default=xrspatial.focal._calc_mean
Function which takes an input array and returns an array.
Returns
-------
agg : xarray.DataArray of same type as `raster`
2D aggregate array of filtered values.
Examples
--------
Focal apply works with NumPy backed xarray DataArray
.. sourcecode:: python
>>> import numpy as np
>>> import xarray as xr
>>> from xrspatial.convolution import circle_kernel
>>> from xrspatial.focal import apply
>>> data = np.arange(20, dtype=np.float64).reshape(4, 5)
>>> raster = xr.DataArray(data, dims=['y', 'x'], name='raster')
>>> print(raster)
<xarray.DataArray 'raster' (y: 4, x: 5)>
array([[ 0., 1., 2., 3., 4.],
[ 5., 6., 7., 8., 9.],
[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.]])
Dimensions without coordinates: y, x
>>> kernel = circle_kernel(2, 2, 3)
>>> kernel
array([[0., 1., 0.],
[1., 1., 1.],
[0., 1., 0.]])
>>> # apply kernel mean by default
>>> apply_mean_agg = apply(raster, kernel)
>>> apply_mean_agg
<xarray.DataArray 'focal_apply' (y: 4, x: 5)>
array([[ 2. , 2.25 , 3.25 , 4.25 , 5.33333333],
[ 5.25 , 6. , 7. , 8. , 8.75 ],
[10.25 , 11. , 12. , 13. , 13.75 ],
[13.66666667, 14.75 , 15.75 , 16.75 , 17. ]])
Dimensions without coordinates: y, x
Focal apply works with Dask with NumPy backed xarray DataArray.
Note that if input raster is a numpy or dask with numpy backed data array,
the applied function must be decorated with ``numba.jit``
xrspatial already provides ``ngjit`` decorator, where:
``ngjit = numba.jit(nopython=True, nogil=True)``
.. sourcecode:: python
>>> from xrspatial.utils import ngjit
>>> from xrspatial.convolution import custom_kernel
>>> kernel = custom_kernel(np.array([
[0, 1, 0],
[0, 1, 1],
[0, 1, 0],
]))
>>> weight = np.array([
[0, 0.5, 0],
[0, 1, 0.5],
[0, 0.5, 0],
])
>>> @ngjit
>>> def func(kernel_data):
... weight = np.array([
... [0, 0.5, 0],
... [0, 1, 0.5],
... [0, 0.5, 0],
... ])
... return np.nansum(kernel_data * weight)
>>> import dask.array as da
>>> data_da = da.from_array(np.ones((6, 4), dtype=np.float64), chunks=(3, 2))
>>> raster_da = xr.DataArray(data_da, dims=['y', 'x'], name='raster_da')
>>> print(raster_da)
<xarray.DataArray 'raster_da' (y: 6, x: 4)>
dask.array<array, shape=(6, 4), dtype=float64, chunksize=(3, 2), chunktype=numpy.ndarray> # noqa
Dimensions without coordinates: y, x
>>> apply_func_agg = apply(raster_da, kernel, func)
>>> print(apply_func_agg)
<xarray.DataArray 'focal_apply' (y: 6, x: 4)>
dask.array<_trim, shape=(6, 4), dtype=float64, chunksize=(3, 2), chunktype=numpy.ndarray> # noqa
Dimensions without coordinates: y, x
>>> print(apply_func_agg.compute())
<xarray.DataArray 'focal_apply' (y: 6, x: 4)>
array([[2. , 2. , 2. , 1.5],
[2.5, 2.5, 2.5, 2. ],
[2.5, 2.5, 2.5, 2. ],
[2.5, 2.5, 2.5, 2. ],
[2.5, 2.5, 2.5, 2. ],
[2. , 2. , 2. , 1.5]])
Dimensions without coordinates: y, x
"""
# validate raster
if not isinstance(raster, DataArray):
raise TypeError("`raster` must be instance of DataArray")
if raster.ndim != 2:
raise ValueError("`raster` must be 2D")
# Validate the kernel
kernel = custom_kernel(kernel)
# apply kernel to raster values
# if raster is a numpy or dask with numpy backed data array,
# the function func must be a @ngjit
mapper = ArrayTypeFunctionMapping(
numpy_func=_apply_numpy,
cupy_func=lambda *args: not_implemented_func(
*args, messages='apply() does not support cupy backed DataArray.'),
dask_func=_apply_dask_numpy,
dask_cupy_func=lambda *args: not_implemented_func(
*args, messages='apply() does not support dask with cupy backed DataArray.'),
)
out = mapper(raster)(raster.data, kernel, func)
result = DataArray(out,
name=name,
coords=raster.coords,
dims=raster.dims,
attrs=raster.attrs)
return result
@cuda.jit
def _focal_min_cuda(data, kernel, out):
i, j = cuda.grid(2)
delta_rows = kernel.shape[0] // 2
delta_cols = kernel.shape[1] // 2
data_rows, data_cols = data.shape
if i < delta_rows or i >= data_rows - delta_rows or \
j < delta_cols or j >= data_cols - delta_cols:
return
s = data[i, j]
for k in range(kernel.shape[0]):
for h in range(kernel.shape[1]):
i_k = i + k - delta_rows
j_h = j + h - delta_cols
if (i_k >= 0) and (i_k < data_rows) and (j_h >= 0) and (j_h < data_cols):
if (kernel[k, h] != 0) and s > data[i_k, j_h]:
s = data[i_k, j_h]
out[i, j] = s
@cuda.jit
def _focal_max_cuda(data, kernel, out):
i, j = cuda.grid(2)
delta_rows = kernel.shape[0] // 2
delta_cols = kernel.shape[1] // 2
data_rows, data_cols = data.shape
if i < delta_rows or i >= data_rows - delta_rows or \
j < delta_cols or j >= data_cols - delta_cols:
return
s = data[i, j]
for k in range(kernel.shape[0]):
for h in range(kernel.shape[1]):
i_k = i + k - delta_rows
j_h = j + h - delta_cols
if (i_k >= 0) and (i_k < data_rows) and (j_h >= 0) and (j_h < data_cols):
if (kernel[k, h] != 0) and s < data[i_k, j_h]:
s = data[i_k, j_h]
out[i, j] = s
def _focal_range_cupy(data, kernel):
focal_min = _focal_stats_func_cupy(data, kernel, _focal_min_cuda)
focal_max = _focal_stats_func_cupy(data, kernel, _focal_max_cuda)
out = focal_max - focal_min
return out
@cuda.jit
def _focal_std_cuda(data, kernel, out):
i, j = cuda.grid(2)
delta_rows = kernel.shape[0] // 2
delta_cols = kernel.shape[1] // 2
data_rows, data_cols = data.shape
if i < delta_rows or i >= data_rows - delta_rows or \
j < delta_cols or j >= data_cols - delta_cols:
return
sum_squares = 0
sum = 0
count = 0
for k in range(kernel.shape[0]):
for h in range(kernel.shape[1]):
i_k = i + k - delta_rows
j_h = j + h - delta_cols
if (i_k >= 0) and (i_k < data_rows) and (j_h >= 0) and (j_h < data_cols):
sum_squares += (kernel[k, h]*data[i_k, j_h])**2
sum += kernel[k, h]*data[i_k, j_h]
count += kernel[k, h]
squared_sum = sum**2
out[i, j] = sqrt((sum_squares - squared_sum/count) / count)
@cuda.jit
def _focal_var_cuda(data, kernel, out):
i, j = cuda.grid(2)
delta_rows = kernel.shape[0] // 2
delta_cols = kernel.shape[1] // 2
data_rows, data_cols = data.shape
if i < delta_rows or i >= data_rows - delta_rows or \
j < delta_cols or j >= data_cols - delta_cols:
return
sum_squares = 0
sum = 0
count = 0
for k in range(kernel.shape[0]):
for h in range(kernel.shape[1]):
i_k = i + k - delta_rows
j_h = j + h - delta_cols
if (i_k >= 0) and (i_k < data_rows) and (j_h >= 0) and (j_h < data_cols):
sum_squares += (kernel[k, h]*data[i_k, j_h])**2
sum += kernel[k, h]*data[i_k, j_h]
count += kernel[k, h]
squared_sum = sum**2
out[i, j] = (sum_squares - squared_sum/count) / count
def _focal_mean_cupy(data, kernel):
out = convolve_2d(data, kernel / kernel.sum())
return out
def _focal_sum_cupy(data, kernel):
out = convolve_2d(data, kernel)
return out
def _focal_stats_func_cupy(data, kernel, func=_focal_max_cuda):
out = cupy.empty(data.shape, dtype='f4')
out[:, :] = cupy.nan
griddim, blockdim = cuda_args(data.shape)
func[griddim, blockdim](data, kernel, cupy.asarray(out))
return out
def _focal_stats_cupy(agg, kernel, stats_funcs):
_stats_cupy_mapper = dict(
mean=_focal_mean_cupy,
sum=_focal_sum_cupy,
range=_focal_range_cupy,
max=lambda *args: _focal_stats_func_cupy(*args, func=_focal_max_cuda),
min=lambda *args: _focal_stats_func_cupy(*args, func=_focal_min_cuda),
std=lambda *args: _focal_stats_func_cupy(*args, func=_focal_std_cuda),
var=lambda *args: _focal_stats_func_cupy(*args, func=_focal_var_cuda),
)
stats_aggs = []
for stats in stats_funcs:
data = agg.data.astype(cupy.float32)
stats_data = _stats_cupy_mapper[stats](data, kernel)
stats_agg = xr.DataArray(
stats_data,
dims=agg.dims,
coords=agg.coords,
attrs=agg.attrs
)
stats_aggs.append(stats_agg)
stats = xr.concat(stats_aggs, pd.Index(stats_funcs, name='stats'))
return stats
def _focal_stats_cpu(agg, kernel, stats_funcs):
_function_mapping = {
'mean': _calc_mean,
'max': _calc_max,
'min': _calc_min,
'range': _calc_range,
'std': _calc_std,
'var': _calc_var,
'sum': _calc_sum
}
stats_aggs = []
for stats in stats_funcs:
stats_agg = apply(agg, kernel, func=_function_mapping[stats])
stats_aggs.append(stats_agg)
stats = xr.concat(stats_aggs, pd.Index(stats_funcs, name='stats'))
return stats
def focal_stats(agg,
kernel,
stats_funcs=[
'mean', 'max', 'min', 'range', 'std', 'var', 'sum'
]):
"""
Calculates statistics of the values within a specified focal neighborhood
for each pixel in an input raster. The statistics types are Mean, Maximum,
Minimum, Range, Standard deviation, Variation and Sum.
Parameters
----------
agg : xarray.DataArray
2D array of input values to be analysed. Can be a NumPy backed,
Cupy backed, or Dask with NumPy backed DataArray.
kernel : numpy.array
2D array where values of 1 indicate the kernel.
stats_funcs: list of string
List of statistics types to be calculated.
Default set to ['mean', 'max', 'min', 'range', 'std', 'var', 'sum'].
Returns
-------
stats_agg : xarray.DataArray of same type as `agg`
3D array with dimensions of `(stat, y, x)` and with values
indicating the focal stats.
Examples
--------
.. sourcecode:: python
>>> import numpy as np
>>> import xarray as xr
>>> from xrspatial.convolution import circle_kernel
>>> kernel = circle_kernel(1, 1, 1)
>>> kernel
array([[0., 1., 0.],
[1., 1., 1.],
[0., 1., 0.]])
>>> data = np.array([
[0, 0, 0, 0, 0, 0],
[1, 1, 2, 2, 1, 1],
[2, 2, 1, 1, 2, 2],
[3, 3, 0, 0, 3, 3],
])
>>> from xrspatial.focal import focal_stats
>>> focal_stats(xr.DataArray(data), kernel, stats_funcs=['min', 'sum'])
<xarray.DataArray 'focal_apply' (stats: 2, dim_0: 4, dim_1: 6)>
array([[[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.],
[1., 1., 0., 0., 1., 1.],
[2., 0., 0., 0., 0., 2.]],
[[1., 1., 2., 2., 1., 1.],
[4., 6., 6., 6., 6., 4.],
[8., 9., 6., 6., 9., 8.],
[8., 8., 4., 4., 8., 8.]]])
Coordinates:
* stats (stats) object 'min' 'sum'
Dimensions without coordinates: dim_0, dim_1
"""
# validate raster
if not isinstance(agg, DataArray):
raise TypeError("`agg` must be instance of DataArray")
if agg.ndim != 2:
raise ValueError("`agg` must be 2D")
# Validate the kernel
kernel = custom_kernel(kernel)
mapper = ArrayTypeFunctionMapping(
numpy_func=_focal_stats_cpu,
cupy_func=_focal_stats_cupy,
dask_func=_focal_stats_cpu,
dask_cupy_func=lambda *args: not_implemented_func(
*args, messages='focal_stats() does not support dask with cupy backed DataArray.'),
)
result = mapper(agg)(agg, kernel, stats_funcs)
return result
@ngjit
def _calc_hotspots_numpy(z_array):
out = np.zeros_like(z_array, dtype=np.int8)
rows, cols = z_array.shape
for y in prange(rows):
for x in prange(cols):
zscore = z_array[y, x]
# find p value
p_value = 1.0
if abs(zscore) >= 2.33:
p_value = 0.0099
elif abs(zscore) >= 1.65:
p_value = 0.0495
elif abs(zscore) >= 1.29:
p_value = 0.0985
# confidence
confidence = 0
if abs(zscore) > 2.58 and p_value < 0.01:
confidence = 99
elif abs(zscore) > 1.96 and p_value < 0.05:
confidence = 95
elif abs(zscore) > 1.65 and p_value < 0.1:
confidence = 90
hot_cold = 0
if zscore > 0:
hot_cold = 1
elif zscore < 0:
hot_cold = -1
out[y, x] = hot_cold * confidence
return out
def _hotspots_numpy(raster, kernel):
if not (issubclass(raster.data.dtype.type, np.integer) or
issubclass(raster.data.dtype.type, np.floating)):
raise ValueError("data type must be integer or float")
data = raster.data.astype(np.float32)
# apply kernel to raster values
mean_array = convolve_2d(data, kernel / kernel.sum())
# calculate z-scores
global_mean = np.nanmean(data)
global_std = np.nanstd(data)
if global_std == 0:
raise ZeroDivisionError(
"Standard deviation of the input raster values is 0."
)
z_array = (mean_array - global_mean) / global_std
out = _calc_hotspots_numpy(z_array)
return out
def _hotspots_dask_numpy(raster, kernel):
data = raster.data.astype(np.float32)
# apply kernel to raster values
mean_array = convolve_2d(data, kernel / kernel.sum())
# calculate z-scores
global_mean = da.nanmean(data)
global_std = da.nanstd(data)
# commented out to avoid early compute to check if global_std is zero
# if global_std == 0:
# raise ZeroDivisionError(
# "Standard deviation of the input raster values is 0."
# )
z_array = (mean_array - global_mean) / global_std
_func = partial(_calc_hotspots_numpy)
pad_h = kernel.shape[0] // 2
pad_w = kernel.shape[1] // 2
out = z_array.map_overlap(_func,
depth=(pad_h, pad_w),
boundary=np.nan,
meta=np.array(()))
return out
@nb.cuda.jit(device=True)
def _gpu_hotspots(data):
zscore = data[0, 0]
# find p value
p_value = 1.0
if abs(zscore) >= 2.33:
p_value = 0.0099
elif abs(zscore) >= 1.65:
p_value = 0.0495
elif abs(zscore) >= 1.29:
p_value = 0.0985
# confidence
confidence = 0
if abs(zscore) > 2.58 and p_value < 0.01:
confidence = 99
elif abs(zscore) > 1.96 and p_value < 0.05:
confidence = 95
elif abs(zscore) > 1.65 and p_value < 0.1:
confidence = 90
hot_cold = 0
if zscore > 0:
hot_cold = 1
elif zscore < 0:
hot_cold = -1
return hot_cold * confidence
@nb.cuda.jit
def _run_gpu_hotspots(data, out):
i, j = nb.cuda.grid(2)
if i >= 0 and i < out.shape[0] and j >= 0 and j < out.shape[1]:
out[i, j] = _gpu_hotspots(data[i:i + 1, j:j + 1])
def _hotspots_cupy(raster, kernel):
if not (issubclass(raster.data.dtype.type, cupy.integer) or
issubclass(raster.data.dtype.type, cupy.floating)):
raise ValueError("data type must be integer or float")
data = raster.data.astype(cupy.float32)
# apply kernel to raster values
mean_array = convolve_2d(data, kernel / kernel.sum())
# calculate z-scores
global_mean = cupy.nanmean(data)
global_std = cupy.nanstd(data)
if global_std == 0:
raise ZeroDivisionError(
"Standard deviation of the input raster values is 0."
)
z_array = (mean_array - global_mean) / global_std
out = cupy.zeros_like(z_array, dtype=cupy.int8)
griddim, blockdim = cuda_args(z_array.shape)
_run_gpu_hotspots[griddim, blockdim](z_array, out)
return out
def hotspots(raster, kernel):
"""
Identify statistically significant hot spots and cold spots in an
input raster. To be a statistically significant hot spot, a feature
will have a high value and be surrounded by other features with
high values as well.
Neighborhood of a feature defined by the input kernel, which
currently support a shape of circle, annulus, or custom kernel.
The result should be a raster with the following 7 values:
- 90 for 90% confidence high value cluster
- 95 for 95% confidence high value cluster
- 99 for 99% confidence high value cluster
- 90 for 90% confidence low value cluster
- 95 for 95% confidence low value cluster
- 99 for 99% confidence low value cluster
- 0 for no significance
Parameters
----------
raster : xarray.DataArray
2D Input raster image with `raster.shape` = (height, width).
Can be a NumPy backed, CuPy backed, or Dask with NumPy backed DataArray
kernel : Numpy Array
2D array where values of 1 indicate the kernel.
Returns
-------
hotspots_agg : xarray.DataArray of same type as `raster`
2D array of hotspots with values indicating confidence level.
Examples
--------
.. sourcecode:: python
>>> import numpy as np
>>> import xarray as xr
>>> from xrspatial.convolution import custom_kernel
>>> kernel = custom_kernel(np.array([[1, 1, 0]]))
>>> data = np.array([
... [0, 1000, 1000, 0, 0, 0],
... [0, 0, 0, -1000, -1000, 0],
... [0, -900, -900, 0, 0, 0],
... [0, 100, 1000, 0, 0, 0]])
>>> from xrspatial.focal import hotspots
>>> hotspots(xr.DataArray(data), kernel)
array([[ 0, 0, 95, 0, 0, 0],
[ 0, 0, 0, 0, -90, 0],
[ 0, 0, -90, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]], dtype=int8)
Dimensions without coordinates: dim_0, dim_1
"""
# validate raster
if not isinstance(raster, DataArray):
raise TypeError("`raster` must be instance of DataArray")
if raster.ndim != 2:
raise ValueError("`raster` must be 2D")
mapper = ArrayTypeFunctionMapping(
numpy_func=_hotspots_numpy,
cupy_func=_hotspots_cupy,
dask_func=_hotspots_dask_numpy,
dask_cupy_func=lambda *args: not_implemented_func(
*args, messages='hotspots() does not support dask with cupy backed DataArray.'), # noqa
)
out = mapper(raster)(raster, kernel)
attrs = copy.deepcopy(raster.attrs)
attrs['unit'] = '%'
return DataArray(out,
coords=raster.coords,
dims=raster.dims,
attrs=attrs)