-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathsemgcn.py
executable file
·616 lines (478 loc) · 21.1 KB
/
semgcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
from models import Model
from helper import *
import tensorflow as tf
from web.embedding import Embedding
from web.evaluate import evaluate_on_all
class SemGCN(Model):
def make_batch(self, shuffle = True):
"""
Generates batches and puts them in the queue
Parameters
----------
shuffle: Whether to shuffle batches or not
Returns
-------
A batch in the form of a diciontary
Edges: Dependency parse edges
Words: Word in the batch
Cur_len:Total number of words in each sentence
"""
batch = []
self.sent_num = 0
num_batch = 0
for semantic in self.semantic_list:
for line in open('./semantic_info/{}.txt'.format(semantic), encoding='utf-8', errors='ignore'):
ele = {}
ele['Words'] = [self.voc2id[wrd.lower()] for wrd in line.strip().split() if wrd.lower() in self.voc2id]
random.shuffle(ele['Words'])
if len(ele['Words']) < 2: continue
ele['Edges'] = [[i, j, self.lbl2id[semantic]] for i, j in itertools.permutations(range(len(ele['Words'])), 2)]
ele['Cur_len'] = len(ele['Words'])
ele['Edges'] = [[e[0], e[1], e[2]] for e in ele['Edges'] if ele['Words'][e[0]] != 0 and ele['Words'][e[1]] != 0]
batch.append(ele)
if len(batch) == self.p.batch_size:
if shuffle: random.shuffle(batch)
self.batch_queue.put(batch)
num_batch += 1
batch = []
self.batch_queue.put(None)
def getBatches(self, shuffle = True):
"""
Returns a generator of batches
Parameters
----------
shuffle: Whether to shuffle batches or not
Returns
-------
Batch generator
"""
self.read_thread = Thread(target = self.make_batch)
self.read_thread.daemon = True
self.read_thread.start()
random.shuffle(self.semantic_list)
while True:
batch = self.batch_queue.get()
self.sent_num += self.p.batch_size
if batch == None: break
else: yield batch
def load_data(self):
"""
Loads the data
Parameters
----------
voc2id: Mapping of word to its unique identifier
id2voc: Inverse of voc2id
id2freq: Mapping of word id to its frequency in the corpus
wrd_list: List of words for which embedding is required
embed_dims: Dimension of the embedding
voc_size: Total number of words in vocabulary
wrd_list: List of words in the vocabulary
de2id: Mapping of edge labels of dependency parse to unique identifier
num_deLabel: Number of edge types in dependency graph
rej_prob: Word rejection probability (frequent words are rejected with higher frequency)
Returns
-------
"""
self.logger.info("Loading data")
self.voc2id = read_mappings('./data/voc2id.txt'); self.voc2id = {k: int(v) for k, v in self.voc2id.items()}
self.id2voc = {v:k for k, v in self.voc2id.items()}
self.id2freq = read_mappings('./data/id2freq.txt'); self.id2freq = {int(k): int(v) for k, v in self.id2freq.items()}
self.vocab_size = len(self.voc2id)
corpus_size = np.sum(list(self.id2freq.values()))
rel_freq = {_id: freq/corpus_size for _id, freq in self.id2freq.items()}
self.rej_prob = {_id: (1-self.p.subsample/rel_freq[_id])-np.sqrt(self.p.subsample/rel_freq[_id]) for _id in self.id2freq}
self.voc_freq_l = [self.id2freq[_id] for _id in range(len(self.voc2id))]
self.batch_queue = queue.Queue(500)
self.semantic_list = []
if self.p.semantic != 'none':
if self.p.semantic == 'all': self.semantic_list = ['synonyms', 'antonyms', 'hyponyms', 'hypernyms']
else: self.semantic_list = [self.p.semantic]
self.lbl2id = {}
self.num_labels = 0
for sem in self.semantic_list:
self.lbl2id[sem] = len(self.lbl2id)
self.num_labels += 1
def add_placeholders(self):
"""
Placeholders for the computational graph
Parameters
----------
sent_wrds: All words in the batch
sent_mask: Mask for removing padding
adj_mat: Adjacnecy matrix for each sentence in the batch
num_words: Total number of words in each sentence
seq_len: Maximum length of sentence in the entire batch
Returns
-------
"""
self.sent_wrds = tf.placeholder(tf.int32, shape=[self.p.batch_size, None], name='sent_wrds')
self.sent_mask = tf.placeholder(tf.float32, shape=[self.p.batch_size, None], name='sent_mask')
self.adj_mat = tf.placeholder(tf.bool, shape=[self.num_labels, self.p.batch_size, None, None], name='adj_ind')
self.num_words = tf.placeholder(tf.float32, shape=[self.p.batch_size], name='num_words')
self.seq_len = tf.placeholder(tf.int32, shape=(), name='seq_len')
def get_adj(self, edgeList, max_labels, max_nodes):
"""
Returns the adjacency matrix required for applying GCN
Parameters
----------
edgeList: List of all edges
max_labels: Maximum number of edge labels in dependency parse
max_nodes: Maximum number of words in the batch
Returns
-------
Adjacency matrix shape=[Number of dependency labels, Batch size, seq_len, seq_len]
"""
adj_mat = np.zeros((max_labels, self.p.batch_size, max_nodes, max_nodes), np.bool)
for i, edges in enumerate(edgeList):
for j, (src, dest, lbl) in enumerate(edges):
adj_mat [lbl, i, src, dest] = 1
return adj_mat
def padData(self, data, seq_len, cur_lens):
"""
Pads a given batch
Parameters
----------
data: List of tokenized sentences in a batch
seq_len: Maximum length of sentence in the batch
cur_len: Total number of words in each sentence in a batch
Returns
-------
temp: Padded word sequence
mask: Masking for padded words
"""
temp = np.full((len(data), seq_len), self.vocab_size, np.int32)
mask = np.zeros((len(data), seq_len), np.float32)
for i, ele in enumerate(data):
temp[i, :len(ele)] = ele[:seq_len]
mask[i, :cur_lens[i]] = np.ones(cur_lens[i], np.float32)
return temp, mask
def pad_dynamic(self, Words, cur_lens):
"""
Pads a given batch
Parameters
----------
Words: List of tokenized sentences in a batch
cur_len: Total number of words in each sentence in a batch
Returns
-------
Word_pad: Padded word sequence
Words_mask: Masking for padded words
seq_len: Maximum length of sentence in the batch
"""
seq_len = max([len(wrds) for wrds in Words])
Words_pad, Words_mask = self.padData(Words, seq_len, cur_lens)
return Words_pad, Words_mask, seq_len
def create_feed_dict(self, batch):
"""
Creates the feed dictionary
Parameters
----------
batch: Batch as returned by getBatch generator
Returns
-------
feed_dict: Feed dictionary
"""
Words = [ele['Words'] for ele in batch]
Edges = [ele['Edges'] for ele in batch]
Cur_len = [ele['Cur_len'] for ele in batch]
feed_dict = {}
feed_dict[self.sent_wrds], feed_dict[self.sent_mask], seq_len = self.pad_dynamic(Words, Cur_len)
feed_dict[self.adj_mat] = self.get_adj(Edges, self.num_labels, seq_len)
feed_dict[self.seq_len] = seq_len
feed_dict[self.num_words] = np.float32([len(wrds)-1 for wrds in Words])
return feed_dict
def aggregate(self, inp, adj_mat):
"""
GCN aggregation operation
Parameters
----------
inp: Action from neighborhood nodes
adj_mat: Adjacency matrix
Returns
-------
out: Embedding obtained after aggregation operation
"""
return tf.matmul(tf.cast(adj_mat, tf.float32), inp)
def gcnLayer(self, gcn_in, in_dim, gcn_dim, batch_size, max_nodes, max_labels, adj_mat, w_gating=True, num_layers=1, name="GCN"):
"""
GCN Layer Implementation
Parameters
----------
gcn_in: Input to GCN Layer
in_dim: Dimension of input to GCN Layer
gcn_dim: Hidden state dimension of GCN
batch_size: Batch size
max_nodes: Maximum number of nodes in graph
max_labels: Maximum number of edge labels
adj_ind: Adjacency matrix indices
adj_data: Adjacency matrix data (all 1's)
w_gating: Whether to include gating in GCN
num_layers: Number of GCN Layers
name Name of the layer (used for creating variables, keep it different for different layers)
Returns
-------
out List of output of different GCN layers with first element as input itself, i.e., [gcn_in, gcn_layer1_out, gcn_layer2_out ...]
"""
out = []
out.append(gcn_in)
for layer in range(num_layers):
gcn_in = out[-1]
if len(out) > 1: in_dim = gcn_dim # After first iteration the in_dim = gcn_dim
with tf.name_scope('%s-%d' % (name,layer)):
with tf.variable_scope('Loop-name-%s_layer-%d' % (name, layer)) as scope:
w_loop = tf.get_variable('w_loop', initializer=tf.eye(in_dim), trainable=False, regularizer=self.regularizer)
inp_loop = tf.tensordot(gcn_in, w_loop, axes=[2,0])
if self.p.dropout != 1.0: inp_loop = tf.nn.dropout(inp_loop, keep_prob=self.p.dropout)
loop_act = inp_loop
act_sum = loop_act
for lbl in range(max_labels):
with tf.variable_scope('label-%d_name-%s_layer-%d' % (lbl, name, layer)) as scope:
w_in = tf.get_variable('w_in', initializer=tf.eye(in_dim), trainable=True, regularizer=self.regularizer)
w_out = tf.get_variable('w_out', initializer=tf.eye(in_dim), trainable=True, regularizer=self.regularizer)
b_in = tf.get_variable('b_in', [1, gcn_dim], trainable=True, initializer=tf.constant_initializer(0.0), regularizer=self.regularizer)
b_out = tf.get_variable('b_out', [1, gcn_dim], trainable=True, initializer=tf.constant_initializer(0.0), regularizer=self.regularizer)
if w_gating:
w_gin = tf.get_variable('w_gin', [in_dim, 1], initializer=tf.contrib.layers.xavier_initializer(), regularizer=self.regularizer)
b_gin = tf.get_variable('b_gin', [1], initializer=tf.constant_initializer(0.0), regularizer=self.regularizer)
w_gout = tf.get_variable('w_gout', [in_dim, 1], initializer=tf.contrib.layers.xavier_initializer(), regularizer=self.regularizer)
b_gout = tf.get_variable('b_gout', [1], initializer=tf.constant_initializer(0.0), regularizer=self.regularizer)
with tf.name_scope('in_arcs-%s_name-%s_layer-%d' % (lbl, name, layer)):
inp_in = tf.tensordot(gcn_in, w_in, axes=[2,0]) + tf.expand_dims(b_in, axis=0)
adj_matrix = tf.transpose(adj_mat[lbl], [0,2,1])
if self.p.dropout != 1.0:
inp_in = tf.nn.dropout(inp_in, keep_prob=self.p.dropout)
if w_gating:
inp_gin = tf.tensordot(gcn_in, w_gin, axes=[2,0]) + tf.expand_dims(b_gin, axis=0)
inp_in = inp_in * tf.sigmoid(inp_gin)
in_act = self.aggregate(inp_in, adj_matrix)
else:
in_act = in_t
act_sum += in_act
with tf.name_scope('out_arcs-%s_name-%s_layer-%d' % (lbl, name, layer)):
inp_out = tf.tensordot(gcn_in, w_out, axes=[2,0]) + tf.expand_dims(b_out, axis=0)
adj_matrix = adj_mat[lbl]
if self.p.dropout != 1.0:
inp_out = tf.nn.dropout(inp_out, keep_prob=self.p.dropout)
if w_gating:
inp_gout = tf.tensordot(gcn_in, w_gout, axes=[2,0]) + tf.expand_dims(b_gout, axis=0)
inp_out = inp_out * tf.sigmoid(inp_gout)
out_act = self.aggregate(inp_gout, adj_matrix)
else:
out_act = out_t
act_sum += out_act
act_sum = act_sum / tf.reshape(3 * self.num_words, [self.p.batch_size, 1, 1])
gcn_out = tf.nn.relu(act_sum) if layer != num_layers-1 else act_sum
out.append(gcn_out)
return out
def add_model(self):
"""
Creates the Computational Graph
Parameters
----------
Returns
-------
nn_out: Logits for each bag in the batch
"""
with tf.variable_scope('Embed_mat'):
embed_init = getEmbeddings(self.p.embed_loc, [self.id2voc[i] for i in range(len(self.voc2id))], self.p.embed_dim)
_wrd_embed = tf.get_variable('embed_matrix', initializer=embed_init, trainable=True, regularizer=self.regularizer)
wrd_pad = tf.Variable(tf.zeros([1, self.p.embed_dim]), trainable=False)
self.embed_matrix = tf.concat([_wrd_embed, wrd_pad], axis=0)
self.context_matrix = self.embed_matrix
embed = tf.nn.embedding_lookup(self.embed_matrix, self.sent_wrds)
gcn_out = self.gcnLayer(gcn_in = embed, in_dim = self.p.embed_dim, gcn_dim = self.p.embed_dim,
batch_size = self.p.batch_size, max_nodes = self.seq_len, max_labels = self.num_labels,
adj_mat = self.adj_mat, w_gating = self.p.wGate, num_layers = self.p.gcn_layer, name = "GCN")
nn_out = gcn_out[-1]
return nn_out
def add_loss_op(self, nn_out):
"""
Computes the loss for learning embeddings
Parameters
----------
nn_out: Logits for each bag in the batch
Returns
-------
loss: Computes loss
"""
target_words = tf.reshape(self.sent_wrds, [-1, 1])
nn_out_flat = tf.reshape(nn_out, [-1, self.p.embed_dim])
neg_ids, _, _ = tf.nn.fixed_unigram_candidate_sampler(
true_classes = tf.cast(target_words, tf.int64),
num_true = 1,
num_sampled = self.p.neg_samples * self.p.batch_size,
unique = True,
distortion = 0.75,
range_max = self.vocab_size,
unigrams = self.voc_freq_l
)
neg_ids = tf.cast(neg_ids, dtype=tf.int32)
neg_ids = tf.reshape(neg_ids, [self.p.batch_size, self.p.neg_samples])
neg_ids = tf.reshape(tf.tile(neg_ids, [1, self.seq_len]), [self.p.batch_size, self.seq_len, self.p.neg_samples])
target_ind = tf.concat([
tf.expand_dims(self.sent_wrds, axis=2),
neg_ids
], axis=2)
target_embed = tf.nn.embedding_lookup(self.context_matrix, target_ind)
target_labels = tf.concat([
tf.ones( [self.p.batch_size, self.seq_len, 1], dtype=tf.float32),
tf.zeros([self.p.batch_size, self.seq_len, self.p.neg_samples], dtype=tf.float32)],
axis=2)
pred = tf.reduce_sum(tf.expand_dims(nn_out, axis=2) * target_embed, axis=3)
target_labels = tf.reshape(target_labels, [self.p.batch_size * self.seq_len, -1])
pred = tf.reshape(pred, [self.p.batch_size * self.seq_len, -1])
total_loss = tf.nn.softmax_cross_entropy_with_logits(labels=target_labels, logits=pred)
masked_loss = total_loss * tf.reshape(self.sent_mask, [-1])
loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(self.sent_mask)
if self.regularizer != None:
loss += tf.contrib.layers.apply_regularization(self.regularizer, tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
return loss
def add_optimizer(self, loss, isAdam=True):
"""
Add optimizer for training variables
Parameters
----------
loss: Computed loss
Returns
-------
train_op: Training optimizer
"""
with tf.name_scope('Optimizer'):
if isAdam: optimizer = tf.train.AdamOptimizer(self.p.lr)
else: optimizer = tf.train.GradientDescentOptimizer(self.p.lr)
train_op = optimizer.minimize(loss)
return train_op
def __init__(self, params):
"""
Constructor for the main function. Loads data and creates computation graph.
Parameters
----------
params: Hyperparameters of the model
Returns
-------
"""
self.p = params
if not os.path.isdir(self.p.log_dir): os.system('mkdir {}'.format(self.p.log_dir))
if not os.path.isdir(self.p.emb_dir): os.system('mkdir {}'.format(self.p.emb_dir))
self.logger = get_logger(self.p.name, self.p.log_dir, self.p.config_dir)
self.logger.info(vars(self.p)); pprint(vars(self.p))
self.p.batch_size = self.p.batch_size
if self.p.l2 == 0.0: self.regularizer = None
else: self.regularizer = tf.contrib.layers.l2_regularizer(scale=self.p.l2)
self.load_data()
self.add_placeholders()
nn_out = self.add_model()
self.loss = self.add_loss_op(nn_out)
if self.p.opt == 'adam': self.train_op = self.add_optimizer(self.loss)
else: self.train_op = self.add_optimizer(self.loss, isAdam=False)
self.merged_summ = tf.summary.merge_all()
self.summ_writer = None
def checkpoint(self, loss, epoch, sess):
"""
Computes intrinsic scores for embeddings and dumps the embeddings embeddings
Parameters
----------
epoch: Current epoch number
sess: Tensorflow session object
Returns
-------
"""
embed_matrix, \
context_matrix = sess.run([self.embed_matrix, self.context_matrix])
voc2vec = {wrd: embed_matrix[wid] for wrd, wid in self.voc2id.items()}
embedding = Embedding.from_dict(voc2vec)
results = evaluate_on_all(embedding)
results = {key: round(val[0], 4) for key, val in results.items()}
curr_int = np.mean(list(results.values()))
self.logger.info('Current Score: {}'.format(curr_int))
if curr_int > self.best_int_avg:
if self.p.dump:
self.logger.info("Saving embedding matrix")
f = open('embeddings/{}'.format(self.p.name), 'w')
for id, wrd in self.id2voc.items():
f.write('{} {}\n'.format(wrd, ' '.join([str(round(v, 6)) for v in embed_matrix[id].tolist()])))
self.best_int_avg = curr_int
def run_epoch(self, sess, epoch, shuffle=True):
"""
Runs one epoch of training
Parameters
----------
sess: Tensorflow session object
epoch: Epoch number
shuffle: Shuffle data while before creates batches
Returns
-------
loss: Loss over the corpus
"""
losses = []
st = time.time()
for step, batch in enumerate(self.getBatches(shuffle)):
feed = self.create_feed_dict(batch)
loss, _= sess.run([self.loss, self.train_op], feed_dict=feed)
losses.append(loss)
if (step+1) % 10 == 0:
self.logger.info('E:{} (Sents: {}/{} [{}]): Train Loss \t{:.5}\t{}\t{:.5}'.format(epoch, self.sent_num, self.p.total_sents, round(self.sent_num/self.p.total_sents * 100 , 1), np.mean(losses), self.p.name, self.best_int_avg))
en = time.time()
if (en-st) >= 3600:
self.logger.info("One more hour is over")
self.checkpoint(np.mean(losses), epoch, sess)
st = time.time()
return np.mean(losses)
def fit(self, sess):
"""
Trains the model and finally evaluates on test
Parameters
----------
sess: Tensorflow session object
Returns
-------
"""
self.saver = tf.train.Saver()
save_dir = 'checkpoints/' + self.p.name + '/'
if not os.path.exists(save_dir): os.makedirs(save_dir)
self.save_path = os.path.join(save_dir, 'best_int_avg')
if self.p.restore:
self.saver.restore(sess, self.save_path)
self.best_int_avg = 0.0
for epoch in range(self.p.max_epochs):
self.logger.info('Epoch: {}'.format(epoch))
train_loss = self.run_epoch(sess, epoch)
self.checkpoint(train_loss, epoch, sess)
self.logger.info('[Epoch {}]: Training Loss: {:.5}, Best Loss: {:.5}\n'.format(epoch, train_loss, self.best_int_avg))
if __name__== "__main__":
parser = argparse.ArgumentParser(description='Retrofitting GCN')
parser.add_argument('-gpu', dest="gpu", default='0', help='GPU to use')
parser.add_argument('-name', dest="name", default='test', help='Name of the run')
parser.add_argument('-embed', dest="embed_loc", required=True, help='Embedding for initialization')
parser.add_argument('-embed_dim',dest="embed_dim", default=300, type=int, help='Embedding Dimension')
parser.add_argument('-total', dest="total_sents", default=64640, type=int, help='Total number of sentences in file')
parser.add_argument('-lr', dest="lr", default=0.001, type=float, help='Learning rate')
parser.add_argument('-batch', dest="batch_size", default=64, type=int, help='Batch size')
parser.add_argument('-epoch', dest="max_epochs", default=200, type=int, help='Max epochs')
parser.add_argument('-l2', dest="l2", default=0.0, type=float, help='L2 regularization')
parser.add_argument('-seed', dest="seed", default=1234, type=int, help='Seed for randomization')
parser.add_argument('-opt', dest="opt", default='adam', help='Optimizer to use for training')
parser.add_argument('-neg', dest="neg_samples", default=200, type=int, help='Number of negative samples')
parser.add_argument('-gcn_layer',dest="gcn_layer", default=1, type=int, help='Number of layers in GCN over dependency tree')
parser.add_argument('-noGate', dest="wGate", action='store_false', help='Use gating in GCN')
parser.add_argument('-drop', dest="dropout", default=1.0, type=float, help='Dropout for full connected layer')
parser.add_argument('-semantic', dest="semantic", default='synonyms', help='Which semantic information to use')
parser.add_argument('-dump', dest="dump", action='store_true', help='Dump context and embed matrix')
parser.add_argument('-restore', dest="restore", action='store_true', help='Restore from the previous best saved model')
parser.add_argument('-logdir', dest="log_dir", default='./log/', help='Log directory')
parser.add_argument('-embdir', dest="emb_dir", default='./embeddings/', help='Log directory')
parser.add_argument('-config', dest="config_dir", default='./config/', help='Config directory')
parser.add_argument('-subsample',dest="subsample", default=1e-4, type=float, help='Subsampling parameter')
args = parser.parse_args()
if not args.restore: args.name = args.name + '_' + time.strftime("%d_%m_%Y") + '_' + time.strftime("%H:%M:%S")
tf.set_random_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
set_gpu(args.gpu)
model = SemGCN(args)
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
model.fit(sess)
print('Model Trained Successfully!!')