-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathenlighten.py
112 lines (83 loc) · 4.08 KB
/
enlighten.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import time
import os
from EnlightenGAN.options.test_options import TestOptions
from EnlightenGAN.data.data_loader import CreateDataLoader
from EnlightenGAN.models.models import create_model
from EnlightenGAN.util.visualizer import Visualizer
from pdb import set_trace as st
from EnlightenGAN.util import html
import torch
import numpy as np
import random
from EnlightenGAN.data.base_dataset import BaseDataset, get_transform
import cv2 as cv
class EnlightenModel(object):
def __init__(self, device = 'cpu'):
if torch.cuda.is_available() and device == "cuda":
device = 0
elif not torch.cuda.is_available() or device == "cpu":
device = -1
self.device = device
self.opt = self.create_opt()
self.get_transform = get_transform(self.opt)
self.model = create_model(self.opt)
def create_opt(self):
arguments = ["--dataroot", "",'--name', 'enlightening', '--model', 'single', "--which_direction", "AtoB", "--no_dropout",
"--dataset_mode", "unaligned", "--which_model_netG", "sid_unet_resize", "--skip", "1",
"--use_norm", "1", "--use_wgan", "0", "--self_attention", "--times_residual", "--instance_norm", "0",
"--resize_or_crop", "no", "--which_epoch", "200", "--gpu_ids", f"{self.device}"]
opt = TestOptions().parse(arguments)
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
return opt
def normalize_image(self, rgb_image):
A_img = self.get_transform(rgb_image)
if self.opt.resize_or_crop == 'no':
r,g,b = A_img[0]+1, A_img[1]+1, A_img[2]+1
A_gray = 1. - (0.299*r+0.587*g+0.114*b)/2.
A_gray = torch.unsqueeze(A_gray, 0)
input_img = A_img
else:
w = A_img.size(2)
h = A_img.size(1)
if (not self.opt.no_flip) and random.random() < 0.5:
idx = [i for i in range(A_img.size(2) - 1, -1, -1)]
idx = torch.LongTensor(idx)
A_img = A_img.index_select(2, idx)
if (not self.opt.no_flip) and random.random() < 0.5:
idx = [i for i in range(A_img.size(1) - 1, -1, -1)]
idx = torch.LongTensor(idx)
A_img = A_img.index_select(1, idx)
if self.opt.vary == 1 and (not self.opt.no_flip) and random.random() < 0.5:
times = random.randint(self.opt.low_times,self.opt.high_times)/100.
input_img = (A_img+1)/2./times
input_img = input_img*2-1
else:
input_img = A_img
r,g,b = input_img[0]+1, input_img[1]+1, input_img[2]+1
A_gray = 1. - (0.299*r+0.587*g+0.114*b)/2.
A_gray = torch.unsqueeze(A_gray, 0)
A_gray = A_gray[None, ...]
A_img = A_img[None, ...]
input_img = input_img[None, ...]
B_img = A_img.clone()
return {'A': A_img, 'B': B_img, 'A_gray': A_gray, 'input_img': input_img,
'A_paths': "", 'B_paths': ""}
def infer(self, bgr_image, size = None):
rgb_image = cv.cvtColor(bgr_image, cv.COLOR_BGR2RGB)
if size is not None:
rgb_image = cv.resize(rgb_image, size)
data = self.normalize_image(rgb_image)
self.model.set_input(data)
out = self.model.predict()
image_enhancement = out["fake_B"]
image_enhancement = cv.cvtColor(image_enhancement, cv.COLOR_RGB2BGR)
return image_enhancement
if __name__ == "__main__":
model = EnlightenModel(device = "cuda")
for fname in ["nepal_real_A.png", "pic2_real_A.png"]:
img = cv.imread(f"images/{fname}")
out = model.infer(img)
cv.imwrite(f"results/enlighten/{fname}", out)