-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathrepeat_filter.py
128 lines (107 loc) · 3.54 KB
/
repeat_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import sys
import numpy as np
import networkx as nx
contig_coverage = {}
contig_degree = {}
contig2links = {}
central_nodes = {}
contig_length = {}
#contig coverages
with open(sys.argv[1],'r') as f:
for line in f:
attrs = line.split()
contig_coverage[attrs[0]] = float(attrs[1])
#contig degree, bundled links
G = nx.MultiGraph()
with open(sys.argv[2],'r') as f:
for line in f:
attrs = line.split()
G.add_edge(attrs[0],attrs[2])
for node in G.nodes():
contig_degree[node] = G.degree(node)
#invalidated links
with open(sys.argv[3],'r') as f:
for line in f:
attrs = line.split()
contig2links[attrs[0]] = int(attrs[1])
#skewed links
skewed_edges = {}
for node in G.nodes():
s_count = 0
for neighs in G.neighbors(node):
if node in contig_coverage and neighs in contig_coverage:
if contig_coverage[node] >= 2*contig_coverage[neighs]:
s_count += 1
skewed_edges[node] = s_count*1.0/len(list(G.neighbors(node)))
#centralities
centralities = {}
with open(sys.argv[4],'r') as f:
for line in f:
attrs = line.split()
centralities[attrs[0]] = float(attrs[1])
#centralities = nx.betweenness_centrality(G)
#lengths
with open(sys.argv[5],'r') as f:
for line in f:
attrs = line.split()
contig_length[attrs[0]] = int(attrs[1])
repeats = {}
mean = np.mean(list(centralities.values()))
stdev = np.std(list(centralities.values()))
for contig in centralities:
repeats[contig] = 1
p_coverage = np.percentile(list(contig_coverage.values()),75)
p_invalidated = np.percentile(list(contig2links.values()),75)
p_degree = np.percentile(list(contig_degree.values()),75)
p_skewed = np.percentile(list(skewed_edges.values()),75)
avg_coverage = np.mean(list(contig_coverage.values()))
other_repeats = {}
coverage_outliers = {}
links_outliers = {}
skewed_outliers = {}
degree_outliers = {}
for contig in contig_coverage:
if contig_coverage[contig] >= p_coverage:
coverage_outliers[contig] = 1
for contig in skewed_edges:
if skewed_edges[contig] >= p_skewed:
skewed_outliers[contig] = 1
for contig in contig2links:
if contig2links[contig] >= p_invalidated:
links_outliers[contig] = 1
for contig in contig_degree:
if contig_degree[contig] >= p_degree:
degree_outliers[contig] = 1
for contig in coverage_outliers:
if contig in links_outliers and contig in degree_outliers:
other_repeats[contig] = 1
repeat_contigs = set()
for key in repeats:
repeat_contigs.add(key)
for key in other_repeats:
repeat_contigs.add(key)
with open(sys.argv[2],'r') as f:
for line in f:
attrs = line.split()
dist = float(attrs[4])
#if contig_coverage[attrs[0]] >= 3.5*avg_coverage or contig_coverage[attrs[2]] >=33.5*avg_coverage:
# continue
if mean != 0 and stdev != 0 and attrs[0] in repeats or attrs[2] in repeats:
continue
if attrs[0] in other_repeats or attrs[2] in other_repeats:
continue
if dist < 0:
if abs(dist) >= contig_length[attrs[0]] or abs(dist) >= contig_length[attrs[2]]:
if abs(dist) >= contig_length[attrs[0]]:
repeat_contigs.add(attrs[0])
if abs(dist) >= contig_length[attrs[2]]:
repeat_contigs.add(attrs[2])
continue
else:
print(line.strip())
continue
print(line.strip())
ofile = open(sys.argv[6],'w')
#pool = ThreadPool(cpus)
for each in repeat_contigs:
ofile.write(each+'\n')