Download Anaconda and install (tested with Anaconda3-2022.05-Linux-x86_64.sh
)
Create the file with a text editor if it doesn't exist or just run conda config
to create an empty file.
/home/<user>/.condarc
auto_activate_base: false
channels:
- defaults
- conda-forge
- fbriol # FES tide https://github.com/CNES/aviso-fes
# https://docs.conda.io/projects/conda/en/latest/user-guide/configuration/use-condarc.html#ssl-verification-ssl-verify
ssl_verify: false
# https://docs.conda.io/projects/conda/en/latest/user-guide/configuration/use-condarc.html#show-channel-urls-show-channel-urls
show_channel_urls: True
If bebind a proxy (usual in corporations), it's possible to set proxy variables in the .condarc
file like this. However, the mamba
package manager seems to ignore these definitions and conda
itself ignores the no_proxy
variable as reported here. Due to this, is recommended to only set the proxy variables in the ~/.bashrc
file, e.g.:
export {all_proxy,ALL_PROXY,http_proxy,HTTP_PROXY,https_proxy,HTTPS_PROXY,ftp_proxy,FTP_PROXY}=http://myuser:[email protected]:8080
export {no_proxy,NO_PROXY}=localhost,127.0.0.1,my-company.com
NOTE: mamba is a reimplementation of the conda package manager in C++, so it is much faster when solving dependencies. It is worth installing it in the base env and just replacing the conda
with mamba
command when creating a new env (mamba create -n <env_name> ...
) or installing a new package (mamba install <pkg>
). I could not find a single reason to not use mamba
instead of conda
when creating a env
or installing a package. But in case of a problem with any of the commands below, conda
can be used instead. mamba
has some dependencies, so it can take conda
a few minutes (~5) to install it.
conda install -y -n base mamba
After installing mamba
it is best to change the base
environment (env) as little as possible and always create a new env when trying new packages. The new env can be created "by hand", e.g.:
mamba create -n <env_name> python=3.10 ipython spyder pydantic mypy tqdm pytest python-magic pandas pandas-stubs pyjanitor missingno xarray dask netcdf4 cfgrib zarr rasterio rioxarray cf_xarray eccodes cdsapi pygrib astropy metpy metar seawater gsw pyfes pyinterp universal_pathlib unidecode humanize tabulate termcolor aniso8601 gooey bs4 tenacity cachetools pipreqs pikepdf cx_oracle flask flask-restful celery cartopy cartopy_offlinedata owslib seaborn windrose plotly python-kaleido folium ipyleaflet cmocean colorcet cmasher python-docx xlsxwriter xlrd openpyxl geopy alphashape descartes gitpython git lftp awscli nco cdo ncview
or imported from text files, e.g.:
txt
with exact copy (versions) of packages:
conda list --explicit > spec-file.txt
conda create --name <env_name> --file spec-file.txt
yml
with same packages (but not necessarly same versions):
mamba env export --no-build > environment.yml
mamba env create -f environment.yml
but remembering to edit thename
andprefix
variables at the first and last lines to the desired values.
NOTE: even using mamba
an env
with so many packages can take several (~5) minutes to solve all the dependencies, best to go grab a ☕.
After creation, the new env must be activated, e.g.:
conda activate <env_name>
To connect to Oracle databases using the cx_oracle
library, the user also needs the Oracle library files.
Dowload and extract:
- instantclient-basic-linux.x64-21.1.0.0.0.zip
- instantclient-sqlplus-linux.x64-21.1.0.0.0.zip
Set the paths:
export LD_LIBRARY_PATH=/some/dir/instantclient_21_1:$LD_LIBRARY_PATH
export PATH=/some/dir/instantclient_21_1:$PATH
export ORACLE_HOME=/some/dir/instantclient_21_1
mamba create -n cfconv cfchecker compliance-checker
mamba create -n qgis python=3.8 qgis jupyter qtconsole matplotlib numpy pandas xarray netCDF4
List the available envs:
conda env list
Remove an env:
conda remove --name <env_name> --all
Ignore some errors and warnings in the code style:
/home/<user>/.config/pycodestyle
[pycodestyle]
ignore = E501, E722, W503, W605